Outline

• Soil formation
• Importance of Soil
• Soil Basics
 – Soil composition
 – Texture and clay minerals
 – Soil pH and nutrient availability
 – Soil organic matter
• Soil distribution on Guam
Soil = $f(\text{PM, CI, O, R, T})$

Factors:
- PM = parent material (rocks)
- CI = climate (precipitation and temperature)
- O = organisms (plants and animals)
- R = relief (topography, drainage)
- T = time
Processes:
1. Additions
 - Water, organic matter, sediment
2. Losses
 - Soluble compounds, erosion
3. Transformations
 - Organic matter to humus
 - Primary minerals to clay minerals
4. Translocations
 - Soluble compounds
 - Clays
Island Formation

Cross-Section Sketch of Mariana Arc
(After Hussong and Fryer, 1981)
• Volcanic rock is the foundation of the island
• Southern portion is primarily volcanic rock
• Northern portion is limestone overlying volcanic rock

Source: Gingrich (2003) USGS Report 03-4126
A - topsoil
B - subsoil
C - saprolite
Soil Formation on Limestone

1. Dissolution of \(\text{CaCO}_3 \) limestone, and soil forms from impurities
 - 30-100 ft of limestone to produce 1 ft of soil

2. Deposition of dust blown from Asian deserts, and soils form from weathering of the dust
5 Functions of Soil

- Medium for Plant growth
- Habitat for Soil organisms
- Recycling system
- Water supply and purification
- Engineering Medium
• Animal health begins with good nutrition
• Grasses and other plants are the source of nutrients
• Soils supply nutrients and store water for plant growth
Soil Composition

Inarajan soil

Photos: B. Gavenda

Akina soil
<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Textural Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agfayan</td>
<td>Clay</td>
</tr>
<tr>
<td>Akina</td>
<td>Silty Clay</td>
</tr>
<tr>
<td>Atate</td>
<td>Clay</td>
</tr>
<tr>
<td>Chacha</td>
<td>Clay</td>
</tr>
<tr>
<td>Guam</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>Inarajan</td>
<td>Clay</td>
</tr>
<tr>
<td>Kagman</td>
<td>Clay</td>
</tr>
<tr>
<td>Pulantat</td>
<td>Clay</td>
</tr>
<tr>
<td>Ritidian</td>
<td>Clay Loam</td>
</tr>
<tr>
<td>Sasalaguan</td>
<td>Clay</td>
</tr>
<tr>
<td>Shioya</td>
<td>Loamy Sand</td>
</tr>
<tr>
<td>Togcha</td>
<td>Silty Clay</td>
</tr>
<tr>
<td>Yigo</td>
<td>Silty Clay</td>
</tr>
<tr>
<td>Ylig</td>
<td>Clay</td>
</tr>
</tbody>
</table>
Properties and Importance of Clay

• Properties
 – High surface area
 • 1 gram = 10 to 800 m²
 – Charged surfaces
 • Usually negatively charged, but highly weathered oxide clays have + charge

• Importance
 – High water holding capacity
 – High nutrient retention capacity (cation exchange capacity, CEC)
Clay Type is Important

- Montmorillonite *(high activity clay)*
 - Shrink-swell clay (unstable)
 - High fertility clay (high cation exchange capacity)
- Kaolinite *(low activity clay)*
 - Non-expanding clay (stable)
 - Low fertility clay (low cation exchange capacity)
- Fe & Al oxides *(low activity clay)*
 - Goethite, gibbsite
 - Non-expanding clay (stable)
 - Very low fertility (no cation exchange capacity)
Negatively charged sites that adsorb cations:

- Ca$^{2+}$
- Mg$^{2+}$
- K$^+$
- NH$_4^+$

Cation Exchange Capacity (CEC)
• Guam Clay Loam contains high Al-oxides (low activity clay) with good physical properties

• But has high CEC, a property associated with high activity clay
The pH Scale
Soil Acidity and Nutrient Availability

Optimum pH
• Soils typically acid to strongly acid
• Aluminum toxicity especially severe in Akina subsoil
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>OM</th>
<th>pH</th>
<th>CEC</th>
<th>Base$_{sat}$</th>
<th>Al$_{sat}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>5</td>
<td>5.0</td>
<td>12.4</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>20-10</td>
<td>2.8</td>
<td>4.9</td>
<td>8.4</td>
<td>49</td>
<td>51</td>
</tr>
</tbody>
</table>

The diagram shows the geographic distribution of various soil types, including Akina Silty Clay and Togcha and Akina. The photograph on the left depicts a soil sample with visible organic matter and roots.
Role of Organic Matter in Soil

Physical
- Improves soil structure
- Increases water retention

Chemical
- Increases nutrient availability (N & P cycling, solubility)
- Increases nutrient retention (CEC)
- Detoxifies Al

Biological
- Increases microbial diversity
- N fixation (rhizobia), P availability (myccorhiza)
- Increases pathogen suppression
- 53 map units on the soil survey
- Map unit name provides no information on soil properties
- Soil Taxonomy is a classification system used to group soils based on measurable properties
Soil fertility properties

<table>
<thead>
<tr>
<th>Horizon</th>
<th>%Clay</th>
<th>pH</th>
<th>% C</th>
<th>Ca (cmol_c kg⁻¹)</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70.0</td>
<td>6.5</td>
<td>5.09</td>
<td>62.8</td>
<td>10.8</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>A / B</td>
<td>75.7</td>
<td>6.6</td>
<td>2.28</td>
<td>51.2</td>
<td>8.5</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Bw1</td>
<td>85.1</td>
<td>7.5</td>
<td>1.47</td>
<td>65.3</td>
<td>5.6</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Bw2</td>
<td>65.5</td>
<td>8.0</td>
<td>1.05</td>
<td>91.2</td>
<td>3.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Source: NRCS soil characterization data
Atate series (Alfisol) covers approximately 60% of the map unit

<table>
<thead>
<tr>
<th>Horizon</th>
<th>%Clay</th>
<th>pH</th>
<th>% C</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>42.8</td>
<td>5.5</td>
<td>3.86</td>
<td>6.2</td>
<td>4.7</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>A2</td>
<td>53.6</td>
<td>6.2</td>
<td>1.85</td>
<td>2.6</td>
<td>2.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Bo1</td>
<td>74.4</td>
<td>5.8</td>
<td>0.91</td>
<td>2.3</td>
<td>4.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Bo2</td>
<td>56.8</td>
<td>5.9</td>
<td>0.53</td>
<td>3.4</td>
<td>6.9</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Akina series (Oxisol)

<table>
<thead>
<tr>
<th>Horizon</th>
<th>%Clay</th>
<th>pH</th>
<th>% C</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>65.5</td>
<td>5.0</td>
<td>5.04</td>
<td>3.4</td>
<td>6.6</td>
<td>tr</td>
<td>0.5</td>
</tr>
<tr>
<td>Bo1</td>
<td>68.9</td>
<td>4.9</td>
<td>2.81</td>
<td>1.4</td>
<td>2.7</td>
<td>tr</td>
<td></td>
</tr>
<tr>
<td>Bo2</td>
<td>62.1</td>
<td>5.0</td>
<td>1.53</td>
<td>1.1</td>
<td>2.6</td>
<td>tr</td>
<td></td>
</tr>
<tr>
<td>Bw</td>
<td>50.5</td>
<td>5.1</td>
<td>0.63</td>
<td>1.0</td>
<td>2.8</td>
<td>tr</td>
<td></td>
</tr>
</tbody>
</table>

Source: NRCS soil characterization data
Guam Series

Guam series (Entisol)

<table>
<thead>
<tr>
<th>Horizon</th>
<th>%Clay</th>
<th>pH</th>
<th>% C</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap1</td>
<td>8.3</td>
<td>7.6</td>
<td>6.8</td>
<td>84.4</td>
<td>4.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Ap2</td>
<td>7.7</td>
<td>7.8</td>
<td>5.9</td>
<td>79.9</td>
<td>2.1</td>
<td>tr</td>
<td>0.1</td>
</tr>
<tr>
<td>C</td>
<td>5.5</td>
<td>8</td>
<td>2.8</td>
<td>71.9</td>
<td>0.7</td>
<td>tr</td>
<td>tr</td>
</tr>
</tbody>
</table>

Source: NRCS soil characterization data
Grazing Management and Soil Quality

compaction
→
reduced infiltration
→
runoff
→
erosion
Grazing Management and Soil Quality
Soils are non-renewable!