Development of a Native Plant Understory Agroforestry System for Restoration, Invasive Species Control and Sustainable Use in Hawai‘i

Cynthia Nazario-Leary, Tamara Ticktin and Travis Idol
University of Hawai‘i at Mānoa
College of Tropical Agriculture & Human Resources
Dept. of Natural Resources and Environmental Management
Harold L. Lyon Arboretum in Mānoa Valley, Oʻahu, Hawaiʻi
- Two sites at 260 to 290 m elevation with steep slopes (50% to 80%)
- Annual rainfall ranges from 2000-3,000 mm.
- Soil is shallow, well-drained silt loams developed from volcanic ash and material weathered from cinders.
Purpose of Study

- Support the needs of native Hawaiian communities by providing sustainably harvestable material of culturally valued plants
 - Decrease collection pressures on wild stocks of native plants
 - Reduce dependence on imported plant materials
- Complement native plant forest restoration efforts
- Suppress or control invasive species regeneration
Selection Criteria for Native Plants

- Cultural value
 - Current use by Hawaiian culture

- Economic value
 - Monetary value of harvested plant material

- Restoration value
 - Potential ability to suppress invasive species

- Understory species

- Documented to have existed in research area
Microlepia strigosa (palapalai)

- Terrestrial fern found in the understory of Hawai‘i’s mesic forests
- Traditionally gathered for Hawaiian lei making and hula
- Decline and degradation of Hawai‘i’s forests has made it difficult to find and gather
- Harvesting of ferns can be an added pressure on already declining populations
Pipturus albidus (mamaki)

- Relatively fast-growing midstory shrub which casts moderate shade found in Hawai‘i’s mesic forests.
- Traditionally used for Hawaiian kapa and medicinal uses.
- Dried leaves used for herbal tea and tonic.
- Host to endemic butterflies and moths.
Alyxia stellata (maile)

- Slow-growing woody vine found in the understory of Hawai‘i’s mesic forests
- Traditionally and commercially valued lei plant.
- Can be difficult to find desired specimens. About 90% of maile is imported from the Cook Islands.
Site Description

- Lower site – closed canopy forest of reforested nonnative species.
- Upper site – intermittent overstory of both nonnative and native species.
- Six 6x6 m plots at each site, half are cleared (C) of nonnative mid-story and half left intact (I)
- *Ardisia elliptica* accounts for most nonnative under- and mid-story vegetation.
Relative percent of *Ardisia elliptica*

<table>
<thead>
<tr>
<th>Site</th>
<th>Understory Seedlings</th>
<th>Understory Ground cover</th>
<th>Midstory (DBH) 10-15cm</th>
<th>Midstory (DBH) 15-25cm</th>
<th>Overstory (DBH) 10-15cm</th>
<th>Overstory (DBH) 15-25cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>90</td>
<td>75</td>
<td>96</td>
<td>71</td>
<td>85</td>
<td>17</td>
</tr>
<tr>
<td>Lower</td>
<td>97</td>
<td>85</td>
<td>88</td>
<td>86</td>
<td>57</td>
<td>0</td>
</tr>
</tbody>
</table>

DBH = Diameter at Breast Height
Spherical densiometer used to estimate forest canopy cover per plot

Percent light transmittance in each plot calculated using data from quantum light sensors in open and understory conditions
Light Environment

<table>
<thead>
<tr>
<th>Site</th>
<th>Treatment</th>
<th>% Light Transmittance</th>
<th>% Canopy Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>Cleared</td>
<td>20±4.6</td>
<td>46±6.0</td>
</tr>
<tr>
<td></td>
<td>Intact</td>
<td>1.1±0.25</td>
<td>90±0.0</td>
</tr>
<tr>
<td>Lower</td>
<td>Cleared</td>
<td>3.6±0.82</td>
<td>72±4.0</td>
</tr>
<tr>
<td></td>
<td>Intact</td>
<td>0.07±0.18</td>
<td>89±3.0</td>
</tr>
</tbody>
</table>

Average max incident light is \(\approx 2000 \mu\text{mol m}^{-2} \text{s}^{-1} \) so...

\[2000 \times 20\% = 400 \mu\text{mol m}^{-2} \text{s}^{-1} \]

1.1\% = 22
3.6\% = 72
0.07\% = 14
Native Plant Survival

<table>
<thead>
<tr>
<th>Site</th>
<th>Palapalai $n=54$</th>
<th>Mamaki $n=24$</th>
<th>Maile $n=18$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleared</td>
<td>100%</td>
<td>63%</td>
<td>44%</td>
</tr>
<tr>
<td>Intact</td>
<td>59%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleared</td>
<td>100%</td>
<td>25%</td>
<td>39%</td>
</tr>
<tr>
<td>Intact</td>
<td>76%</td>
<td>0%</td>
<td>17%</td>
</tr>
</tbody>
</table>
Invasive Species Regeneration

![Graph showing biomass comparison]

Upper Unplanted
Upper Planted
Lower Unplanted
Lower Planted

A. elliptica

Biomass (g)

All Invasive spp. Biomass (g)

Aug-05 Apr-06 Nov-06 Jun-07 Jan-08 Jun-08
Potential Harvestable Yield

- 108 harvestable mature palapalai plants
- Average total number of fronds per plant = 50.
- One lei approximately needs 3-8 fronds, depending on size of lei needed
- Hence, harvesting 6 –16% of each plant will provide one lei per plant.
Survival and growth of native outplantings is improved when invasive midstory is cleared.

Invasive species regeneration can be controlled using native outplantings and biannual weeding.

Palapalai has potential to be sustainably harvested 1-2 years after outplanting.
Future Goals

- Determine sustainable harvestable yield of palapalai.
 - How much? How often?
- Implementation and management by local community groups (e.g. hula halau).
 - Land access? Gathering rights?
- Further research to improve survival and growth of outplanted native species.
 - Appropriate levels of resource acclimation?
Acknowledgements

USDA, CSREES Tropical and Subtropical Agricultural Research (TSTAR) for Hawai‘i

Harold L. Lyon Arboretum, University of Hawai‘i at Mānoa