The residual activities of imazapyr and glyphosate on dormant *Pennisetum setaceum* (fountain grass), within the Pohakuloa Training Area

James Leary¹, Kelsey Loeffler¹, Alyssa Cho¹, Joe DeFrank¹, Creighton Litton¹, Michael Bressel²

¹College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa
²Center for Environmental Management of Military Lands, Colorado State University
Post-fire regeneration being displayed as a mechanism of survival and re-occupation.
Active ingredients:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Rate</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat®- imazapyr</td>
<td>1 qt/A =0.5 lbs a.i./A</td>
<td>IM</td>
</tr>
<tr>
<td>Roundup Original Max®- glyphosate</td>
<td>1 qt/A =1.125 lbs acid equivalents./A</td>
<td>GLY</td>
</tr>
</tbody>
</table>

Adjuvants:

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Rate</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-11®- non-ionic surfactant</td>
<td>0.25% v/v (1qt/100gal)</td>
<td>NIS</td>
</tr>
<tr>
<td>Hasten®- modified vegetable oil</td>
<td>0.5% v/v (1pt/A)</td>
<td>MVO</td>
</tr>
<tr>
<td>In-Place®- inverted emulsion</td>
<td>0.25% v/v (8 oz/A)</td>
<td>IE</td>
</tr>
</tbody>
</table>
Monthly accumulated precipitation (inches) at PTA for 2007. Collected from remotely monitored weather station PTRH1 located within Range 17, adjacent to our experiment. Data is being archived by the MesoWest Project, Utah State University.

http://www.met.utah.edu/mesowest/
Imazapyr (white flags) and glyphosate (yellow flags) treatment plots recorded in November 2007 (31 WAT). Grass regeneration in glyphosate corresponding to winter precipitation and indistinguishable to untreated surroundings.
Visual Color Index for rating herbicide injury

1. Record digital images of random representative 1x1 m areas encompassed by a frame placed within the treatment plot (2x subsamples in Jan and March 08).

2. Superimpose a grid layer over the image (4x4 grid for Nov. 2007 results and 8x8 grid for Jan and March 2008).

3. Select and record presence or absence of green regenerating foliage within the grid.
Grid overlay of regenerating foliage, (green) or absence (white)

11/07 (31 WAT)
01/08 (41 WAT)
03/08 (48 WAT)
06/08 (61 WAT)

Imazapyr

Glyphosate

No image
Mean foliar and root regeneration relative to initial dry weights of plantlets harvested from treatment plots 41 WAT and grown in the greenhouse for 6 weeks. Significantly greater foliar (P=0.0019) and root (P=0.0003) regrowth in GLY treatments.
Mean counts (±SE n=3) of flower spikes within 4 m² plots recorded on January 24 (41 WAT) and March 13 2008 (48 WAT). Significantly greater spikes in GLY treatments at 41 WAT (P=0.0001) and 48 WAT (P=0.0002).

<table>
<thead>
<tr>
<th></th>
<th>IM</th>
<th>IM</th>
<th>IM</th>
<th>IM</th>
<th>GLY</th>
<th>GLY</th>
<th>GLY</th>
<th>GLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS</td>
<td>1±1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>51±5</td>
<td>42±19</td>
<td>40±4</td>
<td>44±24</td>
</tr>
<tr>
<td>MVO</td>
<td>53±28</td>
<td>46±9</td>
<td>39±21</td>
<td>153±28</td>
<td>100±53</td>
<td>130±43</td>
<td>176±84</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
<td>IE</td>
</tr>
</tbody>
</table>
Mean regenerating foliar fraction relative to total above ground biomass collected from two individual clumps. Significantly greater regrowth observed in the field in GLY treatments at 61 WAT (P=0.022)

<table>
<thead>
<tr>
<th></th>
<th>IM</th>
<th>IM</th>
<th>IM</th>
<th>IM</th>
<th>GLY</th>
<th>GLY</th>
<th>GLY</th>
<th>GLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS</td>
<td>0.15</td>
<td>0.15</td>
<td>0.26</td>
<td>0.15</td>
<td>0.23</td>
<td>0.33</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>MVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61 WAT
Waipunalei (DHHL) in August, 2007 (0 WAT) dominated by kikuyu grass (*Pennisetum clandestinum*) and Yorkshire Fog (*Holcus lanatus*)
Waipunalei (DHHL) in November, 2007 (10 WAT). Grasses desiccated by aerial application of Habitat® at 1 qt/A in 10 gal/A volume
Bonus feature: Tolerance of young *Acacia koa* tree
Conclusions

The utility of imazapyr allows for greater flexibility in management planning and implementation.

Increasing rate to 2 qt/A could result in greater grass suppression and fuel load reduction.

Opportunities in selectivity with the establishment of native legumes.

Sensitivity observed on *Dodonea viscosa, Metrosiderous polymorpha and Myrsine lessertiana*
Acknowledgements:

The U.S. Army
Center for Environmental Management of Military Lands, Colorado State University
Jennifer and Joe Vollmer and John Smith, BASF Corporation
Bob Eccles, Wilbur-Ellis Company
Mike Robinson, Department of Hawaiian Home Lands (DHHL)

Funding and support for this project provided by:

Tropical Sub Tropical Agricultural Research (TSTAR) Project no. HAW01911-08G. Sponsored by USDA-CSREES
Renewable Resources Extension Act (RREA) Project no. 13-132. Sponsored by USDA-CSREES

New partners:
Mike Donoho, HETF Puu Waawaa Dry Forest Unit, Division of Forestry and Wildlife (DoFAW)
Lisa Hadway, Ali Ainsworth, Jennifer Randall and Ian Cole NARS staff, DoFAW
James Leary, PhD
Assistant Researcher
Department of Plant and Environmental Protection Sciences
College of Tropical Agriculture and Human Resources
University of Hawaii at Manoa
phone: 808-956-9268
eemail: leary@hawaii.edu