Reducing the Nascent Patch Network of Miconia (*Miconia calvescens* DC) with an Accelerated Intervention Strategy Utilizing Herbicide Ballistic Technology (HBT)

For video rendition please visit: http://www.youtube.com/watch?v=988i6SQKSzY
Invasion Biology of Miconia

- Miconia (*Miconia calvoscens* DC)
- An autogamous (self-fertile) species
- Millions of seed produced by a single tree
- Small, edible fruit dispersed by birds
- Dispersal range >1000 m
- Seed bank viability >20 years
- Germination in heavy shade

- A SINGLE MICONIA PLANT CAN IMPACT >1000 HA OF PROTECTED WATERSHED!

East Maui Watershed
>55,000 ha with 59 threatened and endangered species
Produces >200 billion liters of surface water each year
Multi-agency management initiated in 1991
Mission: Conduct interventions on high-value satellite target populations

Crew: Portside pilot/applicator + front starboard navigator creating a 220° FOV

Treatment: 0.68 caliber soft gel projectiles encapsulating 199.4 mg triclopyr (HBT-G4U200)
Accelerating deployment of HBT surveillance operations in 2012-2013
~237 hours of total flight time
Accelerating deployment of HBT surveillance operations in 2012-2013
~186 hours Operational Flight Time (OFT: airspeed \leq 20\ knots) covering \sim 3900\ ha (9600\ acres)
Accelerating deployment of HBT surveillance operations in 2012-2013
7463 targets treated with 194,026 projectiles w/ HBT; 33% increase in ops resulting in 168% increase in targets treated
A surgical herbicide delivery technique = small footprint on the landscape

Mean herbicide dose is 5.42 grams ae^{-1} = 28 projectiles target$^{-1}$

89% of total net treated area (~530 ha) = <1% of max herbicide use rate (HUR_{max}; 6.72 kg ae^{-1}/ha)

$y = 5.4272x$
$R^2 = 0.914$

67.2 g ae^{-1}/ha = 1% of HUR_{max}
Search efficiency of an HBT surveillance operation

\[y = 0.897x + 0.6815 \]

\[R^2 = 0.5309 \]

48% of total net area (~1850 ha) searched with only 4% OFT
Target density reduction fits exponential decay function
1% decay rate with 60% target density reduction; reduction half-life = 64 hrs OFT
Delimiting process expanding search area beyond known target locations
Operational performance improves with accelerated schedule
Herbicide use rate (grams acid equivalent) reduced 92.5%
Search efficiency improved by 68%
Reducing variable cost of operations

$$\text{ops} = TD * [(SE \times \text{OFT (heli = $16.68/min; 3-person crew = $1.22/min)} + (\text{PTE} \times ($0.31/\text{projectile})))$$

Variable costs of operation reduced 70%; **Protecting watershed at < $10/acre!!!**
Projecting future goals
2012-2013 achievements: 60% target density reduction; protected 3900ha
2014 goals: target density reduction >95%; expand protection >4100 ha
Custom HBT sensor data logger system
Improving spatial resolution (10m pixel res) of herbicide use rate

Dose rate (grams ae/tgt) for 142 TGTs

composite avg: 18.6 g
mean ± SD: 17.5 ± 12.6
Partners and Sponsors

This project is a partnership of the following programs:
The Maui Invasive Species Committee, Pacific Cooperative Studies Unit, UHM
The Exotic Plant Management Team, Haleakala National Park
College of Tropical Agriculture and Human Resources

This project is sponsored in parts by:
The Maui County Department of Water Supply
The Maui County Office of Economic Development
The Hawaii Invasive Species Council
The US Forest Service Special Technology Development Program

Sumit Globos
James Leary
Assistant Specialist for Invasive Weed Management
Department of Natural Resources and Environmental Management
Maui County Cooperative Extension Service
College of Tropical Agriculture and Human Resources
University of Hawaii at Manoa

phone: 808-352-8774
email: leary@hawaii.edu
web: http://www.ctahr.hawaii.edu/LearyJ/index.html