Terrestrial Decomposition

• Objectives
 – Controls over decomposition
 • Litter breakdown
 • Soil organic matter formation and dynamics
 – Carbon balance of ecosystems
 • Soil carbon storage
• In terrestrial ecosystems, soils (organic horizon + mineral soil) > C than in vegetation and atmosphere combined
Overview

- Decomposition is:
 1. Major pathway for C loss from ecosystems
 2. Central to ecosystem C loss and storage
Overview

Incorporation → 1 year later

- CO₂
- 60–80 g
- Organic C in residues: 100 grams
- 3–8 g
 - Biomass (soil organisms)
- 3–8 g
 - Nonhumic compounds (polysaccharides, polyuronides, acids, etc.)
- 10–30 g
 - Complex humic compounds

Humus (15–35 g)
Overview

• Predominant controls on litter decomposition are fairly well constrained
 1. Temperature and moisture
 2. Litter quality
 • N availability
 • Lignin concentration
 • Lignin:N

• Mechanisms for soil organic matter stabilization:
 1. Recalcitrance (refers to chemistry)
 2. Physical protection
 • Within soil aggregates
 • Organo-mineral associations
 3. Substrate supply regulation (energetic limitation)
Overview

• Disturbance can override millenia in a matter of days or years:
 1. Land use change
 2. Invasive species
 3. Climate change

• Understanding the mechanistic drivers of decomposition, soil organic matter formation, and carbon stabilization help us make management decisions, take mitigation steps, and protect resources.
Overview

Native Ōhiʻa - Koa forest

Conversion to grass-dominated pasture (80 yr)

Reforestation in *Eucalyptus* plantation (10 yr)

Conventional sugar cane harvest.

Sustainable ratoon harvest.
Decomposition

- Decomposition is the biological, physical and chemical breakdown of organic material
 - Provides energy for microbial growth (heterotrophs)
 - Releases nutrients for uptake by plants & microbes
 - Inorganic and organic
 - Influences ecosystem C storage
Decomposition

- Decomposition consists of abiotic and biotic processes that transform litter into CO$_2$, DOC, and/or SOM.

 1. Leaching (water)
 2. Fragmentation (soil macro- and mesofauna, freeze-thaw)
 3. Chemical alteration (UV degradation or microbially mediated)
Decomposition

Phase 1 ≈ Leaching
Phase 2 ≈ Fragmentation
Phase 3 ≈ Chemical Alteration
Decomposition

• Leaching

 – Moves water-soluble compounds (sugars, amino acids, mineral ions) away from decomposing material & down through soil profile

 – Begins while leaves are still on plant
 • Stemflow, throughfall
 • Enhanced during/after senescence by resorption of leaf compounds

 – Most important for **labile** compounds early in decomposition
 • More important for areas of higher MAP
Plant litter is an important source of soil organic matter. Plants = 75% Water, 25% Dry Matter

Elemental analysis of dry matter?

Structural components of dry matter?

- Carbohydrates
- Lignins and polyphenols
- Proteins
Controls on litter decomposition

1. Sugars, starches, simple proteins
2. Crude proteins
3. Hemicellulose
4. Cellulose
5. Fats and waxes
6. Lignins and phenolic compounds

Rapid Decomposition

Very slow decomposition
Fate of Forest Floor Leachates

Leaf litter
Organic Horizon

Constructed forest floor

Mineral soil core sorption

Leachates removed from soil solution and retained
Decomposition

• Fragmentation
 – Fresh litter is ~protected from microbial attack
 • Bark, cuticle, or skin on exterior
 • Plant cells protected by lignin in cell walls
 – Fragmentation breaks down protective barriers
 – Also increases surface area:volume for microbial activity and mixes OM throughout soils
 • Biological mixing (soil animals)
 • Physical mixing (freeze-thaw, wet-dry)
Soil Mesofauna and Macrofauna

Shredders

Predators

Fungal feeder – orabatid mite

Herbivore

Functional Ecology

• Soil animals: mesofauna (0.1 – 2 mm)
 – Animals with greatest effect on decomposition
 • Fragment litter
 • Ingest litter particles and digest the “microbial jam”
 • Fecal matter has increased surface area & water-holding capacity
 – Collembolans
 • Important in Northern soils (feed on fungi)
 – Mites (many trophic roles)
 • Consume litter, feed on bacteria & fungi
 Functional Ecology

• Soil animals: macrofauna (>2 mm)
 – Earthworms, termites, etc.
 • Fragment litter or ingest soil
 – Ecosystem engineers
 • Mix soil, carry organic matter to depth
 • Reduce compaction
 • Create channels for water and roots
 • Overall, alters resource availability
 • In many places, invasive earthworms are transforming soils
Ecosystem Engineers

Organisms that make major alterations to the physical environment, influencing habitats for many other organisms within the ecosystem

- Humans
- Biotic crusts in deserts
- Burrowing macrofauna, such as earthworms, ant, termites
Soil Food Web

Primary Producers
- Plants, algae, lichens, bacteria
- Solar Energy

Primary Consumers
- Earthworms
- Predatory mites
- Protozoa
- Bacteria, fungi & actinomycetes
- Nematodes (root feeders)
- Mites

Secondary Consumers
- Predatory mites
- Beetle, spider, centipede, ant predators
- Nematodes
- Earthworms
- Springtails
- Protozoa
- Bacteria, fungi & actinomycetes

High Level Consumers
- Amoebas
- Earthworms
- Mammal and bird predators

By-products
- CO₂
- Heat Energy Loss
- Mineral Nutrients
- Organic Matter

Feces and dead bodies
- Saprophytic bacteria, actinomycetes
- Mites & other shredders
- Earthworm shredders
- Saproxytic fungi
- Nematodes (root feeders)
- Mycorrhizal fungi
- Protozoa
- Nematodes (root feeders)
- Mites
- Springtails
- Earthworms
- Bacteria, fungi & actinomycetes
What Do Earthworms Do?

Stimulate microbial activity

- Earthworms derive nutrition from microbes
- Organic matter is fragmented and inoculated in gut
- Greater microbial biomass in feces and casts than in surrounding soil – microbial hotspot

Decomposition

• Chemical alteration
 – **Mineralization** breaks down *organic* matter to *inorganic* CO$_2$ and nutrients
 – **Immobilization** in microbial biomass temporarily makes C and nutrients unavailable to other organisms (e.g., plants)
 – Microbial biomass and byproducts become incorporated into SOM along with the organic residue (forming humus), and often are stabilized
Soil Microorganisms

Soil bacteria

Bacteria on fungi

Fungi decomposing leaf tissue

Mycorrhizal bodies and hyphae

Ectomycorrhizae

Vesicles

Fungi

- Main initial decomposers of dead plant material
- Account for most litter decomposition in aerobic environments
 - 60-90% of microbial biomass in forests
 - About 1/2 of microbial biomass in grasslands
- Broad enzymatic capability; secrete exoenzymes
 - Cell walls (lignin, cellulose, hemicellulose)
 - Fungi are main lignin degraders
 - Cell contents (proteins, sugars, lipids)
 - Fungi and bacteria
Terrestrial Decomposers

- Brown-Rot Fungi – breakdown cellulose and hemicellulose, lignin remains

- White-Rot Fungi – breakdown lignin, leaving cellulose and hemicellulose

(from the Australian Fungi Website)
Terrestrial Decomposers

• Fungi (con’t)
 – Composed of long networks of hyphae
 – Can transport metabolites and nutrients through hyphal network
 • Surface litter & wood degraders
 – import nitrogen from soil to decompose material with low nutrient content
 • Mycorrhizae (trade carbohydrates for nutrients)
 – Fungal hyphae greatly expand soil volume explored → increase nutrient pool available to plants
Terrestrial Decomposers

• Bacteria
 – Grow and reproduce rapidly when resources are readily available (live fast, die young)
 – Specialize on labile substrates
 • Rhizosphere, dead animals, microbes
 – Completely dependent on substrates that diffuse to them (unlike fungi)
 • Exoenzymes and diffusion
 • Water movement thru soils
 • Root and hyphal growth
Terrestrial Decomposers

• Bacteria (con’t)
 – Spatial specialists
 • Rhizosphere, macropores, interior of aggregates
 • Form biofilms on particle surfaces
 – Chemical specialists
 • Different bacteria produce different enzymes
 – consortium
 • Aerobic and anaerobic environments
Terrestrial Decomposers

• Bacteria (con’t)
 – Most bacteria are immobile
 – Become inactive when labile substrate is exhausted
 • 50 to 80% of soil bacteria inactive at any given time, and can remain so for years
 – Activated by presence of substrate
 • e.g., when root grows past; after a precipitation event
Experiment initiated in 1988 to better understand the process of forest N saturation due to anthropogenic N deposition.
Nitrogen deposition is known to increase carbon storage in tree biomass, but soils are an important component of global carbon storage and the effects of nitrogen addition on soil carbon sequestration is less known.

Enhanced carbon inputs to soil via litterfall and root production would drive increases in soil carbon.
20-years: Ecosystem C Stocks

Carbon stocks (kg m\(^{-2}\))

- **Hardwood**
 - N Addition (kg N ha\(^{-1}\) yr\(^{-1}\))
 - Wood
 - Litter
 - Fine roots
 - Forest floor
 - Mineral soil

- **Pine**
 - N Addition (kg N ha\(^{-1}\) yr\(^{-1}\))
 - Wood
 - Litter
 - Fine roots
 - Forest floor
 - Mineral soil

Frey et al. *in review* Biogeochemistry
20-years: Soil C stocks

![Bar chart showing Soil C stocks for Hardwood and Pine with different nitrogen additions.](Frey et al. in review Biogeochemistry)
20-years: Relative Change in Ecosystem Components

Vegetation
- Total tree biomass
- Live tree biomass
- Annual litter fall
- Total fine roots
- Fine root N
- Fine root respiration

Soil
- In situ soil respiration
- Total organic C (O-horizon)
- Total organic C (mineral soil)
- Dissolved organic C
- Lignin
- Lignin:phenol ratio
- Lipids
- N-bearing compounds
- Amino acids and polyamines

Soil microbial community
- Bacterial biomass
- Fungal biomass
- Fungal:bacterial biomass ratio
- Proteolytic enzyme activity
- Oxidative enzyme activity
- Cellulolytic enzyme activity

Percent change with N addition

Frey et al. in review Biogeochemistry
20-years: Inhibition of Fungal Enzymes

Graph b:
- **Y-axis:** Lignin:phenol
- **X-axis:** N Addition (kg N ha$^{-1}$ yr$^{-1}$)
- Bars show the trend with increasing N addition.

Graph c:
- **Y-axis:** Lignin:phenol
- **X-axis:** Fungal biomass (nmol g$^{-1}$)
- Linear regression line with $R^2 = 0.7016$
- Points and regression line indicate a negative correlation.
20-years: Conclusion

- Nitrogen-induced soil carbon accumulation is of equal or greater magnitude to carbon stored in trees.

- Nitrogen enrichment resulted in reduced fungal biomass and activity as well as higher rates of lignin accumulation.

- Soil carbon accumulation in response to nitrogen amendment was due to a suppression of organic matter decomposition rather than enhanced carbon inputs.
Terrestrial Decomposition

• Controls over decomposition:

1. Properties of microbial community
2. Physical environment
 Temperature, moisture, soil properties
3. Substrate quantity and quality
Litter Decomposition

- Decomposition is approximately exponential with time
 - Fast initially, and then very slow
 - K is a rough approximation of decomposition over time
 - Rate differs among substrates
Litter Decomposition

• Litter mass declines \sim exponentially with time
 - \sim Constant proportion of litter decomposed every year

\[L_t = L_0 e^{-kt} \quad \text{or} \quad \ln \frac{L_t}{L_0} = -kt \]

$L_0 =$ mass at time zero
$L_t =$ mass at time t
$k =$ the decomposition constant

$k =$ litterfall / litterpool (mass balance at steady state)
$1/k =$ mean residence time (MRT)
Decomposition rates are highest where it’s warm and moist, lowest where it’s cool and/or dry (or really wet)
Terrestrial Decomposition

- Direct temperature effect on microbial activity
 - Temperature optimum is usually higher than ambient temperature
 - High temperature not always optimal for microbes, especially those adapted to colder environments

Soil respiration is a good index of decomposition rates
Terrestrial Decomposition

• Direct temperature effects

 – Effects on microbial activity
 • R_{growth} dominates at optimal temp’s, but R_{maint} increases with temperature
 – Effect of temperature fluctuations
 • Freeze-thaw lyses microbes & increases substrate supply seasonally
Terrestrial Decomposition

- Indirect temperature effects
 - High temperature \uparrow ET and \downarrow soil moisture
 - High temperature \uparrow quantity & quality of litter inputs
 - High temperature \uparrow chemical weathering and \uparrow nutrient supply
Terrestrial Decomposition

• Moisture effects

 – Response of decomposition to moisture is similar to that of NPP
 • Declines at extremely low and high moisture
 • Enhanced by moisture “pulses”
 – Less sensitive to low moisture than is NPP (little litter accumulation in deserts - photodegradation)
 – More sensitive to high moisture than is NPP (SOM accumulation in waterlogged soils)
 • O_2 diffuses 10,000 more slowly in H_2O than air
 • Plants can transport O_2 from leaves to roots, but not microbes
Terrestrial Decomposition

• Other environmental effects

 – pH
 • Bacteria predominate at high and fungi at low pH
 • Higher rates at neutral pH, lower rates at low pH

 – Soil texture
 • Increased water-holding capacity
 • Binding of SOM by clays (- and + charge sites)
 • Adsorption and deactivation of enzymes by clay
 • *Aggregate structure (anaerobic microsites)
Terrestrial Decomposition

• Substrate quality depends on:

1. Size of molecule (e.g., large molecules must be broken down with enzymes)
2. Types of chemical bonds (e.g., ester linkages versus double bonds)
3. Regularity of structures (e.g., irregular lignin more complex to breakdown)
4. Toxicity (e.g., byproducts may be toxic)
5. Nutrient concentration (e.g., high C:N ratio associated with slow decay)
Litter Decomposition

- Plant species differ predictably in litter quality
 - High-resource-adapted leaves decompose quickly due to higher concentrations of labile C and N
 - Belowground resources are the dominant control over litter quality
Litter Decomposition

• Predictors of decomposition

 – C:N ratio
 • Widely used in the past, not as much now
 • Directly affects decomposition mainly in presence of readily available labile C
 – e.g., Rhizosphere

 – Lignin:N ratio
 • Integrated measure of N concentration and substrate size/complexity
 • Better index in recalcitrant litter
Litter Decomposition

- As lignin:N in leaf litter increases, decomposition rate decreases

![Graph showing the relationship between initial lignin:nitrogen ratio and decomposition constant.](image)
Terrestrial Decomposition

• Substrate quality

 – Susceptibility to decomposition
 – Perhaps THE predominant control over litter decomposition in many ecosystems
 • Climate exerts large effect on substrate quality through effects on vegetation
 • 5 to 10-fold difference in decomposition of different materials in a given climate
Mechanisms for soil organic matter stabilization:

1. Recalcitrance (refers to chemistry)
2. Physical protection
 - Within soil aggregates
 - Organo-mineral associations
3. Substrate supply regulation (energetic limitation)
Primary mechanisms for SOM stabilization

1. Recalcitrance

- LMW acids
- Phospholipids
- Simple sugars
- Starches
- Hemicellulose
- Peptides and AAs
- Cellulose
- Polyphenols
- Complex proteins
- Lipids
- Lignin
- Cuticular waxes
- Black carbon

Free compounds

STABILIZED in the soil matrix

Mean Residence Time (y)
Primary mechanisms for SOM stabilization

2a. Physical protection within aggregates

- Macroaggregate >250µm (from Jastrow and Miller 1998)
 - Soil Processes and the Carbon Cycle, CRC Press.

- Microaggregates
 - Plant and fungal debris
 - Silt sized microaggregate
 - Clay microstructure
 - Particulate OM with hyphae
 - Hyphae

- Pore space
- Interaggregate binding agents

Soil Processes and the Carbon Cycle, CRC Press.
Primary mechanisms for SOM stabilization

2b. Binding to mineral surfaces

- Mineral
- Organic Matter
- Exchangeable

[Diagram showing interactions between mineral, organic matter, and exchangeable ions.]

- Hydroxylated mineral surface
- Hydrophilic functional groups
- Hydrophobic structures
- Direct bond with surface metal cation
- Electrostatic interaction with soluble ions

(Kleber et al. 2007, Biogeochemistry)
Changing paradigms

* Key is that these factors limit microbial accessibility to otherwise decomposable organic matter*

Schmidt et al. 2011, Nature
Because of large stable pools within soil C stock, small changes in the decomposition rate of those stable pools may impact decadal scale changes in global soil C reservoir (from Davidson and Janssens 2006)
Environmental constraints drive differences between intrinsic and apparent temperature sensitivity; and those constraints may themselves be temperature dependent (from Davidson and Janssens 2006).
Microbial Response to Litter Input

- Activity of r-strategist (opportunistic) community increases and overtakes k-strategists (slow and steady decomposers)
- During r-strategists reign: respiration high, microbial biomass high
- r-strategists go dormant or die when preferred substrate is gone, k-strategists consume biomass and remaining litter
- Some carbon from decomposition process is converted to soil humus
Soil Priming

• Non-additive interaction between the decomposition of the added substrate and of SOM.

• One possible mechanism is rapid response of bacteria to fresh inputs (Fontaine et al. 2003).

(from Kuzyakov et al. 2000)
Soil Priming: DIRT Treatments

Litter Transfer

Control Double Litter No Roots No Litter No Inputs

From Nadelhoffer et al. 2004
Soil Priming: Measurements

(from Crow et al. 2009)
Soil Priming: Net Effect

- Dec. in %C
- Inc. in degradation index
- Inc. in stability of residual SOM
- No change in the functional microbial community

(from Crow et al. 2009)
Soil Organic Matter

• Soil (and decomposition) is spatially heterogeneous

1. Aboveground litter layer, soil organic matter, and mineral soil
 • Most decomposition in litter
 • Roots and nutrients concentrated near soil surface
2. Surface roots/SOM vs. deep roots/SOM
3. Soil aggregates and macropores
4. Rhizosphere vs. bulk soil
• Rhizosphere is the major zone of SOM decomposition

1. High inputs of labile C “prime” decomposition
2. Microbes break down SOM for nitrogen
 • Grazing vs. starvation
SOM Decomposition

- Soil is chemically heterogeneous
 - Fresh litter vs. old soil organic matter
 - Different plant parts (leaves vs. wood vs. roots)
 - Cell walls (structural) vs. cell contents (metabolic)
 - Conceptual pools
 - Labile vs. recalcitrant
 - Active vs. slow vs. passive

(From Trumbore 2009)
SOM Decomposition

• Other environmental effects

 – Soil disturbance (e.g., tilling in ag. fields)
 • Reduces SOM protection by clays
 • Breaks up soil aggregates
 • Increases aeration
 • Compaction
SOM Decomposition

- Influenced by age of SOM and initial quality of litter
- Much of SOM is old and recalcitrant
 - But not all of it.
- Low C:N
 - but not more N available!
- Average residence time of SOM of 20-50 years
 - Ranges from days to 1000s of yrs both across and within sites
- SOM decomposition faster in rhizosphere than bulk soil
Terrestrial Decomposition

• Soil-surface CO$_2$ efflux (‘soil respiration’)

 – Major pathway for return of CO$_2$ to the atmosphere
 – Production of CO$_2$ in soils is a biological process
 • R_{autotr} and R_{heterotr}
 – Flux of CO$_2$ from soils is a physical process
 • Diffusion (and mass flow)
 – Soil respiration consists of both autotrophic and heterotrophic components
 • Lots of effort to separate these components
 • To date, $\sim \frac{1}{2}$ vs. $\sim \frac{1}{2}$
Terrestrial Decomposition

- Substrate quantity and quality are the major short-term controls over decomposition

[Diagram showing long-term and short-term controls with factors like biota, time, parent material, and climate impacting decomposition]

69
Terrestrial Decomposition

- Short-term controls over ecosystem-level decomposition are largely controlled by the same variables that control GPP (and NPP)
 - ***Availability of soil resources
Terrestrial Decomposition

• Soil-surface CO$_2$ efflux (‘soil respiration’)
 – Very, very important flux in the C cycle
 • 2nd in magnitude only to GPP
 • Primary component of ecosystem respiration (60-90% in forest ecosystems)
 • Largely determines source/sink dynamics of ecosystems
 – Lots of emphasis on determining what controls soil respiration
 • Temperature (when moisture is not limiting)
 • Moisture (when temperature is not limiting)
 • Canopy processes
 – Increasing recognition that recent photosynthetic products largely drive soil respiration
Terrestrial Decomposition: Summary

• Major controls over decomposition
 – Quantity of litter input
 – Quality of litter input
 – Environmental conditions that control biological activity
 – Interactions with soil minerals and aggregates
 – Microbial activity is more important than microbial biomass
Global soil carbon projections are improved by modeling microbial processes

William R. Wieder*, Gordon B. Bonan¹ and Steven D. Allison³

Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models¹,² and they omit key biogeochemical mechanisms³–⁵. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics⁶–⁸. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO₂ or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.