## U.S. Pacific Basin Agricultural Research Center Coffee Berry Borer Research Update

Robert Hollingsworth, Research Entomologist

808-959-4349 robert.hollingsworth@ars.usda.gov



### **PBARC's response to CBB**

- Participated in informational meetings, along with CTAHR, HDOA, APHIS and other organizations
- Participated in Incident Command Structure set up by HDOA
- Participating on Coffee Berry Borer Task Force/Science Advisory Panel (Eric Jang, Tracie Matsumoto)
- Organized a symposium on Coffee Berry Borer held here at Waikoloa in March (Eric Jang and Robert Hollingsworth), which included the participation of a USDA-ARS expert on CBB (Fernando Vega) and an expert on the use of *Beauveria* (Stefan Jaronski, who later gave a separate presentation to Kona growers on considerations for use of *Beauveria*).
- Coordinated a grant application which included CTAHR and PBARC scientists (Tracie Matsumoto)
- Provided scientific data and testimony in support of successful Beauveria registration efforts which were guided by HDOA (Robert Hollingsworth, Tracie Matsumoto)

### **Research Activities**

- Carried out research related to freezing tolerance (Eric Jang, Robert Hollingsworth, Peter Follett, with additional cooperation from other PBARC scientists)
- On-going studies related to improved traps (Eric Jang)
- On-going flower synchronization studies (Tracie Matsumoto)
- Carried out *Beauveria* efficacy trial in heavily infested coffee in Honomalino (Robert Hollingsworth, Tracie Matsumoto, Elsie Burbano, Marc Meisner, Mark Wright)
- On-going Beauveria persistence and efficacy trial in Captain Cook (Tracie Matsumoto, Lisa Keith, Robert Hollingsworth)
- On-going laboratory and field trials testing feasibility of entomogenous nematodes (Steinernema carpocapsae) against CBB (Roxana Cabos, Robert Hollingsworth)

## Research on Freezing as a Potential Quarantine Treatment for Green Coffee



- 1. Cherries frozen for 1-5 days at different temperatures
- 2. Cherries dissected to determine survival of beetles

# Research on Freezing as a Potential Quarantine Treatment for Green Coffee: >15,000 insects examined

| Coffee Berry Borer Freezing Experiment |                     |          |               |                |                        |                  |                |      |                              |  |
|----------------------------------------|---------------------|----------|---------------|----------------|------------------------|------------------|----------------|------|------------------------------|--|
| Mar-11                                 |                     |          |               |                |                        |                  |                |      |                              |  |
| containers                             | freezer             | cherries | living adults | dead<br>adults | pupae/<br>prepup<br>ae | living<br>larvae | dead<br>larvae | eggs | sum<br>across life<br>stages |  |
| 15                                     | Control             | 766      | 1321          | 282            | 449                    | 1349             | 32             | 315  | 2740                         |  |
| 8                                      | neg 10.5°C for 24 H | 601      | 13            | 840            | 399                    | 3                | 849            | 248  | 2352                         |  |
| 8                                      | neg 10.5°C for 48 H | 581      | 0             | 815            | 286                    | 13               | 738            | 250  | 2102                         |  |
| 5                                      | neg 15°C for 24 H   | 314      | 0             | 416            | 126                    | 0                | 427            | 123  | 1092                         |  |
| 5                                      | neg 15°C for 48 H   | 371      | 0             | 702            | 149                    | 0                | 614            | 178  | 1643                         |  |
| 4                                      | neg 1°C for 24 H    | 373      | 375           | 175            | 215                    | 478              | 113            | 134  | 1490                         |  |
| 4                                      | neg 1°C for 48 H    | 335      | 167           | 349            | 229                    | 212              | 348            | 92   | 1397                         |  |
| 4                                      | neg 1°C for 72 H    | 362      | 54            | 366            | 271                    | 44               | 356            | 99   | 1190                         |  |
| 4                                      | neg 1°C for 120 H   | 184      | 6             | 323            | 113                    | 1                | 151            | 17   | 611                          |  |
| 57                                     | TOTALS              | 3887     | 1936          | 4268           | 2237                   | 2100             | 3628           | 1456 | 15625                        |  |

Note: Containers were small, round ventilated plastic cups (about 500 ml) with a 2-cm thick layer of plaster of Paris/activated charcoal at 9:1 ratio in the bottom. Containers were half-filled with coffee cherries before being placed into freezer.



#### Coffee Berry Borer Trapping (Eric Jang, Lori Carvalho)

#### **Trap Types:**

Scentry 1= paper trap w/ sloped
roof

Scentry 2 = paper trap w/ flat
 roof. Developed by Scentry
 Biologicals, Billings, Montana

Bucket 1 = one entry window
(15cm tall, 15 cm in diameter,
7.5 X 7.5 cm window; red
pepper Krylon Fusion spray
paint)

Bucket 3 = three entry windows

Brocap ® = developed by CIRAD

and PROCAFE

#### New area of research:

(1) Pher- emit dispenser

(2) Scentry Sticky traps
Evaluations are on-going





**Scentry 1** 



#### **Scentry 2**



**Bucket 1** 

**Brocap** 

### **Coffee Berry Borer Trapping**

Location: Coffee Farm in Kainaliu. Traps were placed 15 m apart

Lures: Coffee Berry Borer
Pouches from Scentry (11g)

**Trapping period:** April – July 2011

#### **Results:**

Scentry 1 and Scentry 2 paper traps did just as well as the plastic Brocap® trap. The bucket traps did not capture as many CBB as the other trap types but trap captures were increased with three entry windows compared to one entry window.



## Control of Coffee Flowering to reduce CBB levels in field – Tracie Matsumoto



Without sanitation coffee berries will always be present in this field



## Beauveria efficacy trial in heavily infested coffee in Honomalino



## Beauveria efficacy trial in heavily infested coffee in Honomalino

#### Sprayed:

- (1) Mycotrol (at 1 qt/acre)
- + EcoSpreader (silicone spreader), ~350 ml spray solution (15 seconds) per tree
- Versus -

#### (2) Unsprayed

Harvested cherries the next day.
•Held the cherries in the lab for 7 days, then started dissections

Second and third collections of cherries from same trees made 2 and 3 weeks later; started dissecting the day after collection



## Beauveria efficacy trial in heavily infested coffee in Honomalino



### Field Plot: Greenwell 1

Beauveria persistence (Lisa Keith), Strain Identification (Tracie Matsumoto) and Efficacy (Robert Hollingsworth)



### Field Sample (Tree 6)

- Lisa Keith



high

middle

low

1 sample = 15 berries 5 berries/branch



## Laboratory Results - Lisa Keith









B. bassiana GHA field persistence on coffee berries at Greenwell 1

[Sprayed on Day 0 (4/25/11), Day 24 (5/19/11)]



15 berries randomly selected from 3 branches/tree/time point; washed with 1x wt/vol water + Silwet; diluted, plated & counted

### **GHA Strain Field Persistence Results**

#### Trends indicate:

- B. bassiana GHA strain persisted longer in the field than expected (detected 23 days post 1<sup>st</sup> spray and 35 days post 2<sup>nd</sup> spray)
- —~ 1-2 log GHA decrease within first week after sprays
- Cumulative effect observed after second spray (field baseline for GHA became higher)

## % fungus-killed adults and % cherries with immatures – Robert Hollingsworth



#### **GHA Strain Molecular Identification**

- Tracie Matsumoto

- In progress:
  - Look at the relative representation of GHA vs "native" *Beauveria* isolates on coffee berries
  - Determine the relative numbers of beetles killed by GHA vs "native"
     Beauveria isolates

"native" strains GHA mol wt



**Primer set Ba12** 

### **Entomopathogenic Nematodes**

- Roxana Cabos, Robert Hollingsworth



Juveniles exiting body of decomposing CBB larvae

### Nematode field test was a bust



Roxana Cabos

## Efficacy of nematodes depending on light and liquid carrier



## Efficacy of nematodes depending on light and liquid carrier



### Coffee Berry Borer Larva in Action



## Nematodes getting ready to break free of Mom



### Nematode searching for Host Insect



## Nematodes wiggling after spilling out of dead CBB larva





Adult



### **Predator Thrips**

Karnyothrips flavipes, a predator thrips, is a biological control agent for Coffee Berry Borer in Kenya.

Karnyothrips lay eggs inside infested coffee beans.
Adults and larva thrips feed on CBB eggs and larvae.

Larva of predatory thrips

## Monitoring effectiveness of naturally occurring and sprayed *Beauveria*

- If anyone within the Captain Cook Holualoa area is interested in having us monitor levels of *Beauveria* infection in infested coffee cherries, call Robert Hollingsworth at 808-959-4349 or write to <u>robert.hollingsworth@ars.usda.gov</u>
- (1) We will collect and dissect 20 coffee cherries every two weeks from an ordinary part of your field and also from unsprayed "experimental control" trees you agree to leave alone
- (2) We will ask you when you last sprayed Beauveria
- (3) We will dissect the cherries and let you know the percentage of beetles which are fungus-killed

We are only looking for 3-4 farms

### Acknowledgments:

 Guidance and assistance from US-PBARC Center Director Dennis Gonsalves, HDOA Plant Industry Administrator Lyle Wong and Plant Pest Control Branch Manager Neil Reimer, CTAHR Special Research Director and Entomologist Ken Grace, UDSA-ARS Entomologist Fernando Vega, USDA-ARS Entomologist Stefan Jaronski, and coffee growers Pepe Miranda, Tom Greenwell, and **Andres Magana**