Understanding and Managing Soils for a Healthy Landscape

Jonathan Deenik Soils Specialist Department of Tropical Plant and Soil Sciences University of Hawaii University of Hawai'i at Mānoa

Soil Nutrient Management for Maui County

College of Tropical Agriculture and Human Resources (CTAHR)

Home	Soil Basics	Soils of Maui	Nutrient Management	References
Home				

Introduction

The purpose of this web resource is to provide fundamental concepts for managing nutrients in tropical soils and container crop production. Though basic in principle, the importance of nutrient management cannot be underestimated. If growers are to maximize crop productivity, it is imperative they supply plants with the proper nutrition in both field and greenhouse environments.

The organization of this website consists of four sections:

- Section 1 explores the basic principles that govern crop performance in tropical soils.
- Section 2 discusses the diversity of soils which make up the island of Maui.
- Section 3 focuses on the proper management techniques for maintaining or enhancing the nutrition of tropical soils.
- Section 4 introduces nutrient management strategies for container crop production in soil less media.

Much of the information provided in this website is unique to Maui. We aim to provide the College of Tropical Agriculture and Human Resources' (CTAHR) clients with resources, knowledge and tools that are easily accessible, comprehensible and useful for properly managing their crops. Despite the localized nature of some information supplied here, much of it can be applied elsewhere in the tropics particularly throughout the Pacific.

http://www.ctahr.hawaii.edu/mauisoil/

<u>Outline</u>

Importance of Soils
Soil Diversity on Kauai
Soil Properties
Diagnosis and soil testing
Management for Health

Soil Plant Relationships

Global Soil Regions

S US Department of Agriculture Natural Resources Conservation Service Soil Survey Division World Soil Resources soils.usda.gov/use/worldsoils

Projection: NAD 1983, UTM Zone 4N Source: Natural Resources Conservation Service

Soil Formation

Factors

- Parent material
- Age
- Climate
- Biota
- Topography

Processes

- Additions
- Transformations
- Translocations
- Losses

Weathering of Parent Rock

AugiteCa(Mg,Fe)Si_2O_0 · (Al,Fe)_2O_3Olivine(Mg,Fe)_2SiO_0 \bigcirc \bigcirc </t

<u>Mollisols</u>

Forming Factors

- Parent material
 - Alluvial
- Climate
 - Low rainfall
- Vegetation
 - Grassland open savanna

Processes

- Minimal leaching
- Moderate weathering
- Soil Characteristics
- Fertile soil, high nutrient status
- Clay rich, some shrink swel potential

Source: Natural Resources Conservation Service

Vertisols

Forming Factors

- Parent material
 - Alluvium, coral
- Climate
 - Low rainfall
- Vegetation
 - Grass and scrub land

Processes

- Transformation
- Moderate weathering
- Soil Characteristics
- Very fertile
- Neutral to alkaline
- High shrink-swell potential

<u>Oxisols</u>

Forming Factors

- Parent material
 - Residuum (basalt lava)
- Climate
 - Moderate to high rainfall
- Vegetation
 - Forest/grassland

<u>Processes</u>

- High leaching
- Highly weathered
- Soil Characteristics
- Infertile soil, low nutrient status
- Acidic
- Good physical properties

<u>Ultisols</u>

Forming Factors

- Parent material
 - Residuum (basalt lava)
- Climate
 - High rainfall
- Vegetation
 - Forest

Processes

- High leaching
- Highly weathered
- Soil Characteristics
- Infertile soil, nutrient deficient
- Very acidic
- Good physical properties

What is Soil?

Soil Physical Properties

- Soil texture/structure
 Soil Water
- 3. Soil Organic Matter

Soil Texture

Soil Texture

Important Clay Minerals

1. Kaolinite

- non-expanding
- Low CEC

2. AI/Fe oxides

- non-expanding
- no CEC
- 3. Smectite
 - expanding
 - high CEC
- 4. Allophane
 - high surface area

http://www.cst.cmich.edu/users/Franc1M/esc334/lectures/physical.htm

Some Important Clay Minerals

Properties:

- Shrink/swell
- High surface area
- High nutrient retention (cation exchange capacity, CEC)
- Sticky
- Non-expanding
- Variable charge
- Low surface are
- Low CEC
- Non-sticky
- Non-expanding
- Variable charge
- Low surface are
- Very low CEC
- Non-sticky

Soil Structure

MODERATE

Adverse Effects of Soil Compaction

- Reduced pore sapce
- Increased bulk density
- Root growth inhibition
- Lower water holding capacity
- Reduced water infiltration and percolation
- Reduced aeration and anaerobic conditions
- Increased erosion

Improving Drainage

- Add organic matter
 - glueing action
 - Binding by soil fungi
- Add gypsum (CaSO₄)
 - Polyvalent Ca2+ pulls negatively charged clay particles together

Soil Water

Soil Particle

Soil Water Availability

<section-header>

Field capacity

Wilting point

Soil Air

Arenchyma transport O₂ from atmosphere down to root zone

Importance of Soil Air

- In compacted and/or waterlogged soil, O₂ is present in very low concentrations creating reducing conditions
 - Gaseous loss of plant available N
 - Increase in toxic levels of Manganese in some soils
 - Fermentation and production of toxic by-products of anaerobic respiration

Loss of plant available N in saturated soils

Moving nutrients from soil to plants

Soil Chemical Properties

Cation Exchange Capacity

CEC is defined as the degree to which a soil can adsorb and exchange cations

(NH₄⁺, K⁺, Ca⁺⁺, Mg⁺⁺, Fe⁺⁺....)

ms/images/6437f01.gif

Cation Exchange Capacity

Cation Exchange Capacity

- 1. Clay surfaces
 - Smectite: 80 100 cmol_ckg⁻¹
 - Kaolinite: 3 15 cmol_ckg⁻¹
 - Al/Fe oxides: 0 cmol_ckg⁻¹

2. Organic matter

• Humus: 200 cmol_ckg⁻¹

Soil Acidity

Source of soil acidity - organic acids oxidation reactions leaching synthetic fert - acid rain

Negative Impacts Ca and K deficiency P deficiency Al toxicity (pH < 5.5) Mn toxicity (pH < 5.5)

A. McClellan

Soil pH is an Expression of Acidity/Alkalinity

The pH Scale

Soil Acidity

http://ecology.botany.ufl.edu/ecologyf03/graphics/soilpH.jpg

pH

Negative Effects of Soil Acidity

- Low nutrient retention (CEC)
- Nutrient deficiencies
 - P deficiency

High Soil Aluminum Causes Root Damage

Healthy root hair in soil with low Al

Deformed root hair in soil with high Al

Phosphate retention in soil

Phosphate retention in soil

Liming Materials

Liming material	Chemical name	Relative neutralizing value
Calcitic limestones	calcium carbonate (CaCO ₃)	100
Quicklime	calcium oxide (CaO)	150-175
Hydrated lime	calcium hydroxide (Ca(OH) ₂)	120-135
Dolomitic lime	calcium-magnesium carbonate	95-108
Slag	calcium silicate (CaSiO ₃)	50-70

Liming curves for many soil series in Hawaii available online

http://www.ctahr.hawaii.edu/oc/freepubs/pdf/AS-1.pdf

Soil Organic Matter is the Primary Source of Fertility in Low Activity Clay Tropical Island Soils

Soil Organic Matter

Organic Matter Improves Soil Physical Properties

- OM promotes clay aggregation increasing H₂O infiltration and aeration
- OM decreases soil bulk density
- OM increases soil porosity
- OM increases water retention

Organic Matter Improves Soil Chemical Properties

- OM increases nutrient availability (N cycling, P and micronutrient solubility)
- OM increases CEC (200 cmolc kg-1)
- OM buffers the soil against pH changes
- OM detoxifies AI

Organic Matter Improves Soil Biology

- OM is the food for soil organisms
- OM increases microbial diversity
- Microbial diversity ensures nutrient cycling
- Microbial diversity promotes pathogen suppression through competition

Soil OM & Root Symbioses

Rhizobium

Mycorrhizae

Outline

- Diagnosis of Nutrient Deficiencies
- Soil tests
- Nutrient Management

Essential Plant Nutrients

Macronutrients

Mineral/ Element	Chemical symbol	Main requirement/use by the plant
Macronutrients		
Nitrogen	N	Plant growth; proteins; enzymes; hormones; photosynthesis
Sulphur	S	Amino acids and proteins; chlorophyll; disease resistance; seed production
Phosphorus	Р	Energy compounds; root development; ripening; flowering
Potassium	к	Fruit quality; water balance; disease resistance
Calcium	Ca	Cell walls; root and leaf development; fruit ripening and quality
Magnesium	Mg	Chlorophyll (green colour); seed germination

Micronutrients: B, Cu, Fe, Mn, Zn, Mo, Ni, Co, Cl

Nutrient Mobility in Plants

<u>Immobile</u>

Nutrient Deficiency Symptoms in Plants

sell-study

course from the

XIENSION SERVICE

ntinung

Education Serie

MONTANA

STATE UNIVERSITY EXTENSION

4449-9

May 2009

CCA

Nutrient Management Module No. 9

Plant Nutrient Functions and Deficiency and Toxicity Symptoms

by Ann McCauley, Soil Scientist; Clain Jones, Extension Soil Fertility Specialist; and Jeff Jacobsen, College of Agriculture Dean

Introduction

This module is the ninth in a series of extension materials designed to provide extension agents, Certified Crop Advisers (CCAs), consultants, and producers with pertinent information on nutrient management issues. To make the learning 'active,' and to provide credits to CCAs, a quiz accompanies this module. In addition, realizing that there are many other good information sources including previously developed extension materials, books, web sites, and professionals in the field, we have provide a list of additional resources and contacts for those wanting more in-depth information about plant nutrient functions and deficiency and toxicity symptoms.

Objectives

After reading this module, the reader should be able to:

- 1. Identify and diagnose common plant nutrient deficiency and toxicity symptoms
- 2. Know potential limitations of visual diagnosis
- 3. Understand how to use a key for identifying deficiency symptoms
- 4. Distinguish between mobile and immobile nutrient deficiencies

http://landresources.montana.edu/ NM/Modules/Module9.pdf

Soil Tests

What is a soil test?

- a dilute extracting solution that removes "plant available" nutrients.
- extractant is chosen depending on soil chemical properties.
- extractant does <u>not</u> measure total nutrient content
- Result of soil test is the basis for fertilizer recommendation

Collecting a Soil Sample

- Separate sample for distinct management area
- Sample the root zone (0-6" or 0-12")
- Collect multiple samples
 - Samples can be composited

Soil Testing

- Most common method of predicting nutrient deficiencies/toxicities
- Can be used
 - -to identify yield limiting factors
 - -to indicate soil nutrient supply capacity
 - -as part of a nutrient management plan
 - -to monitor soil fertility trends over time
 - -to manage risk

Soil Test Calibration

Soil Test Level

Soil Test Printout

CTAHR

College of Tropical Agriculture & Human Resources University of Hawaii at Manoa

Soil/Plant Analysis Report

Client: PUA LEHUA FARM P.O. Box 959 Attn: Eric Schott Honokaa, Hawali 96727 Date Reported: 03/15/2006 Agent: SATO, DWIGHT, Office: HILO 875 KOMOHANA STREET HILO, HI 96720 981-5199, Fax: 981-5211

Agricultural Diagnostic Service Center

Department of Agronomy and Soli Science 1910 East-West Road, Honolulu, HI 96822 Ph: (808) 956-6706/7980 FAX: (808) 956-2592 Email: adsc@ctahr.hawaii.edu

Sample Information						
Job Control No:	06-036767-001	Map Unit:	KuC	Plant Grown:	OTHER CROP	
Sample Label:	1	Soil Series:	KUKAIAU	Plant to be grown:	OTHER CROP	
Date Received:	3/15/1906	Soil Category:	LIGHT SOIL	Can you till 4~6 in.?	Yes	
Send Copy To		Soil Depth (in):		Test Results Only?	No	
Elevation (ft.):		Latitude:		Longitude:		

Test Resu	lts and	I Interpre	etation								
LIGHT SOIL						IN	TERPRETA	TION		7	
Soil Analysis	Results	Expected	Very Low	1	Low	1	Sufficient		High	1	Very High
_pH	6.8	6.15				-		-			
P_ppm	2002	67.5							and the second		
K_ppm	374	300				-					
Ca_ppm	4488	3500			and the second secon						
Mg_ppm	649	700					-				
OC_%		No criteria	a found								
Total_N_%		No criteria	a found								
Salinity_EC		1.25									
S_ppm		No criteria	a found								
Fe_ppm	48	No criteria	a found								
Mn_ppm	14	No criteria	a found								
Zn_ppm	7.9	No criteria	a found								
Cu_ppm	9.7	No criteria	a found								
B_ppm		No criteria	a found								
Mo_ppm		No criteria	a found								
Al_ppm		No criteria	a found								
OTHER CROP						IN	TERPRETA	TION			
Plant Analysis	Results	Expected	Very Low	1	Low	1	Sufficient	1	High	1	Very High
N %		No criteria	found								
P %		No criteria	a found								
K %		No criteria	found								
Ca %		No criteria	a found								
Mg %		No criteria	a found								
S %		No criteria	a found								
Fe_ppm		No criteria	found								
Mn ppm		No criteria	a found								
Zn ppm		No criteria	found								
Cu_ppm		No criteria	found								
B_ppm		No criteria	found								
Mo_ppm		No criteria	a found								
Al_ppm		No criteria	found								
NO3 nmm		No criteria	found								

Job Control No: 06-036767-001

Problem Description			
Peppers to be grown.			
Fertilizer and Lime Recomm	endations		
Fertilizer and Lime Recomm Total Nutrient Requirement (Ibs/Acre):	Nitrogen: 175	Phosphorus: 0	Potassium: 0

split into 2 applns.

82

389

Comments

Fertilizer:

---- GENERAL INFORMATION ----

46-0-0

o Knowing levels of sulfur and micronutrients in plants is also important. For proper diagnosis, tissue analysis is needed. o Split the fertilizer into several applications, at planting and thereafter once every 3~4 weeks until the total amount has been applied.

o We recommend that you adopt a nutrient monitoring approach by retaining this sample report for comparison with future samples.

NOTE:

The interpretations are based on Fact Sheet No. 3 "Adequate Nutrient Levels in Soils and Plants in Hawaii."

To help improve future recommendations, please answer the following questions, photocopy this form and return it to above address. 1. Did you need to modify the recommendation? if so, how?

2. Did your plants improve? Please give unit area yield before and after the recommendation was applied.

FEEDBACK

Soil Test Printout

LIGHT SOIL			mainsteam all		INTERPRETATIO	N	
Soil Analysis	Results	Expected	Very Low	Low	Sufficient	High	Very High
_pH	5.6	6.15					
P_ppm	9.8	67.5					
K_ppm	223	300			and the second second second		
Ca_ppm	795	3500					
Mg_ppm	280	700					
OC_%	STAT JURIS	No criteria f	ound				
Total_N_%	md that he	No criteria f	ound				
Salinity EC		1.25					

Fertilizer and Lime Recommendations

Total Nutrient R	equirement (lbs/Acre):	Nitrogen: 300	Phosphorus: 989	Potassium: 92
Fertilizer / Lime	Material	Total Amount (lbs/100	Cost Estimate (\$/100sq-ft.)	
Fertilizer:	10-30-10	6.88	split into 5 applns.	1.38
Lime Material:	Dolomite	3.33	split into 1 applns.	0.734
Ca Material:	Gypsum	16.5	split into 1 applns.	2.98
Mg Material:	Mg-Sulfate	4.52	split into 1 applns.	1.81

Management for Soil Quality

Compost

Improves physical, chemical, and biological properties Need to add in large quantities (> 20 T/acre) Relatively low N content (< 2.0%) Slow-release nutrients

Benefits of Compost

Soil Physical Properties

- 1. Improves soil structure
- 2. Reduces soil density
- 3. Increases porosity
- 4. Increases water infiltration
- 5. Increases water retention

Soil Chemical Properties

- 1. Reduces negative effects of acidity
- 2. Increases nutrient supply
- 3. Increases nutrient retention
- 4. Buffers soil

Soil Biological Properties

COMPOST

- 1. Increases microbial abundance and diversity
- 2. Promotes natural nutrient cycles
- 3. Increases soil health and resilience

Applying Compost

- Most of N is stabilized in organic forms, only ≈10% N available in first crop cycle
- High compost rates required to supply total crop N requirement initially (i.e., > 40 tons/acre)
- Compost applications build soil organic matter increasing residual N release over time (N release rate difficult to predict)

N Fertilizers

<u>Organic</u>

- Fish meal (≈10% N)
- Feather meal (12 13% N)
- Chicken manure (≈3% N)

Conventional

- Urea (46-0-0)
- Ammonium sulfate (21-0-0)
- 16-16-16
- Calcium nitrate
- Potassium nitrate

P Fertilizers

Organic

- Bone meal (≈12-15% P)
- Rock phosphate (2-5% P)
- Chicken manure (2-3% P)

Conventional

- TSP (0-45-0)
- DAP (18-46-0)
- 10-30-10

Bot Weight 4 fbs. / Litt kps.

K Fertilizers

<u>Organic</u>

- Hardwood ashes
- Seaweed
- Sulfate of potash (0-0-50)

Conventional

4R Nutrient Stewardship Concept

- **1. Right Source** - What type of fertilizer? 2. Right Rate - How much? 3. Right Time - When & How often? 4. Right Place
 - Where?

Scientific Principles

		The Four Rights (4Rs)								
		Source	R	ate		Time		Place		
Key Scientifi c Principle s	•	Ensure balanced supply of nutrients Suit soil properties	 Asses nutrie from a sourc Asses dema 	ss ent supply all es ss plant ind	•	Assess dynamics of crop uptake and soil supply Determine timing of loss risk	•	Recognize crop rooting patterns Manage spatial variability		

Practical Choices

		The Four Rights (4Rs)									
	Source	Rate	Time	Place							
Practical Choices	 Commercial fertilizer 	 Test soils for nutrients 	 Pre-plant 	 Broadcast 							
	 Livestock manure 	 Calculate economics 	 At planting At flowering 	 Band/drill/inject Variable-rate application 							
	CompostCrop residue	 Balance crop removal 	At fruiting	approation							

Ensure practices are in accord with principles

Summary

Soils are a critical natural resource to be protected Soils vary on the landscape Different soils have different physical, chemcial and biological properties Organic matter is foundational to soil health and productivity Keep soil pH between 6 and 7 Use soil test to guide soil amendments Apply appropriate amendments at the right time

Mahalo!

