Soils of Guam

Properties and Diversity

Jonathan Deenik, PhD Department of Tropical Plant and Soil Sciences University of Hawaii

Guam Grazing and Livestock Management Workshop January 27-30, 2010

Photo: B. Gavenda

Outline

- Soil formation
- Importance of Soil
- Soil Basics
 - Soil composition
 - Texture and clay minerals
 - Soil pH and nutrient availability
 - Soil organic matter
- Soil distribution on Guam

Soil Formation

Soil = f(PM, CI, O, R, T)

Factors:

- PM = parent material (rocks)
- CI = climate (precipitation and temperature)
- O = organisms (plants and animals)
- R = relief (topography, drainage)
- T = time

Soil Formation

Processes:

- 1. Additions
 - Water, organic matter, sediment
- 2. Losses
 - soluble compounds, erosion
- 3. Transformations
 - Organic matter to humus
 - Primary minerals to clay minerals
- 4. Translocations
 - Soluble compounds
 - Clays

Global Soil Regions

USDA NRCS US Department of Agriculture Natural Resources Conservation Service

Soil Survey Division World Soil Resources soils.usda.gov/use/worldsoils

Island Formation

Parent Material on Guam

- Volcanic rock is the foundation of the island
- Southern portion is primarily volcanic rock
- Northern portion is limestone overlying volcanic rock

Source: Gingrich (2003) USGS Report 03-4126

Limestone PM

Soil Formation on Limestone

- Dissolution of CaCO₃ limestone, and soil forms from impurities
 - 30-100 ft of limestone to produce 1 ft of soil
- Deposition of dust blown from Asian deserts, and soils form from weathering of the dust

Habitat for Soil organisms

Recycling 5 system **Functions** of Soil

and purification

Engineering Medium

Animal health begins with good nutrition
Grasses and other plants are the source of nutrients
Soils supply nutrients and store water for plant growth

Soil Composition

Soil Texture

Soil Series	Textural Class
Agfayan	Clay
Akina	Silty Clay
Atate	Clay
Chacha	Clay
Guam	Clay Loam
Inarajan	Clay
Kagman	Clay
Pulantat	Clay
Ritidian	Clay Loam
Sasalaguan	Clay
Shioya	Loamy Sand
Togcha	Silty Clay
Yigo	Silty Clay
Ylig	Clay

Properties and Importance of Clay

- Properties
 - High surface area
 - 1 gram = 10 to 800 m²
 - Charged surfaces
 - Usually negatively charged, but highly weathered oxide clays have + charge
- Importance
 - High water holding capacity
 - High nutrient retention capacity (cation exchange capacity, CEC)

Clay surfaces

Fine quartz sand

Clay Type is Important

- Montmorillonite (high activity clay)
 - Shrink-swell clay (unstable)
 - High fertility clay (high cation exchange capacity)
- Kaolinite (low activity clay)
 - Non-expanding clay (stable)
 - Low fertility clay (low cation exchange capacity)
- Fe & Al oxides (low activity clay)
 - Goethite, gibbsite
 - Non-expanding clay (stable)
 - Very low fertility (no cation exchange capacity)

Cation Exchange Capacity (CEC)

Negatively charged sites that adsorb cations: Ca²⁺, Mg²⁺, K⁺, NH⁴⁺

- Guam Clay Loam contains high Aloxides (low activity clay) with good physical properties
- But has high CEC, a property associated with high activity clay

The pH Scale

Soil Acidity and Nutrient Availability

- Soils typically acid to strongly acid
- Aluminum toxicity especially severe in Akina subsoil

Role of Organic Matter in Soil

Physical

- Improves soil structure
- Increases water retention

<u>Chemical</u>

- Increases nutrient availability (N & P cycling, solubility)
- Increases nutrient retention (CEC)
- Detoxifies Al

Biological

- Increases microbial diversity
- N fixation (rhizobia), P availability (myccorhiza)
- Increases pathogen suppression

Organic C = 4.39%EBases = 13.4 cmol, kg⁻¹ Al³⁺ = 1.0 cmol_c kg⁻¹ Organic C = 2.02%EBases = 4.6 cmol_c kg⁻¹ Al³⁺ = 5.2 cmol_c kg⁻¹ Organic C = 0.87%EBases = 4.4 cmol_c kg⁻¹ Al³⁺ = 9/2 cmol_c kg⁻¹

Organic C = 0.36% Σ Bases = 4.9 cmol_c kg⁻¹ Al³⁺ = 9.0 cmol_c kg⁻¹

- 53 map units on the soil survey
- Map unit name provides no information on soil properties
- Soil Taxonomy is a classification system used to group soils based on measurable properties

Pulantat Series

Soil Map Units

Pulantat Clay

) 1.5 3

6

Kilometers

9

12

Soil fertility properties

Horizon	%Clay	pН	% C	Ca	Mg	Na	К	
				cmol _c kg ⁻¹				
A	70.0	6.5	5.09	62.8	10.8	0.4	0.6	
A / B	75.7	6.6	2.28	51.2	8.5	0.3	0.4	
Bw1	85.1	7.5	1.47	65.3	5.6	0.2	0.4	
Bw2	65.5	8.0	1.05	91.2	3.0	0.3	0.3	

Source: NRCS soil characterization data

Atate-Akina Map Unit

Atate series (Alfisol) covers approximately 60% of the map unit

Horizon	%Clay	pН	% C	Ca	Mg	Na	K
				cmol _c kg⁻¹			
A1	42.8	5.5	3.86	6.2	4.7	0.2	0.8
A2	53.6	6.2	1.85	2.6	2.7	0.2	0.1
Bo1	74.4	5.8	0.91	2.3	4.3	0.2	0.1
Bo2	56.8	5.9	0.53	3.4	6.9	0.3	0.3

Akina series (Oxisol)

Horizon	%Clay	pН	% C	Ca	Mg	Na	K	
					cmol _c kg ⁻¹			
А	65.5	5.0	5.04	3.4	6.6	tr	0.5	
Bo1	68.9	4.9	2.81	1.4	2.7	tr	tr	
Bo2	62.1	5.0	1.53	1.1	2.6	tr		
Bw	50.5	5.1	0.63	1.0	2.8	tr		

Source: NRCS soil characterization data

Grazing Management and Soil Quality

Grazing Management and Soil Quality

Soils are non-renewable!