Esterase Differences Among *Coptotermes formosanus* (Isoptera: Rhinotermitidae) Populations

by

Jiasi Wang\(^1\) & J. Kenneth Grace\(^{1,2}\)

ABSTRACT

Polyacrylamide gel electrophoresis with *Coptotermes formosanus* workers revealed five esterase loci. One of these bands (Est-1) was shown in previous work to be attributable to symbiotic gut protozoa. Four esterase inhibitors were applied in order to clarify the gel pattern. One of these, Paraoxon, selectively blocked Est-4 and Est-5. Color differences indicated that there were two loci present at the Est-2 position: Est-2A which is sensitive to alpha-naphthyl acetate substrate, and Est-2B which is sensitive to beta-naphthyl acetate substrate. *Coptotermes formosanus* populations from Guangzhou, Hong Kong, Hawaii and Lake Charles (Louisiana) have the Est-2A locus; while populations from New Orleans and Florida have the Est-2B locus. These results suggest that there have been at least two introductions of *C. formosanus* to the United States, that the two populations in different parts of Louisiana have remained genetically isolated, and that the New Orleans and Florida populations are closely related.

INTRODUCTION

Enzymes with many loci, such as esterases, have proven useful due to their variability in investigations using protein electrophoresis to identify genetic markers among insect species or populations (e.g., Clement 1981, 1984; Saul et al. 1976; Wang et al. 1992; Perring et al. 1993; Korman et al. 1991). However, because esterases are coded by many loci and the products of these loci are sometimes strongly expressed, the stained bands on electrophoretic gels may overlap, providing little useful genetic information (Saul et al. 1976). To simplify and clarify these esterase patterns, specific inhibitors to block the expression of specific loci have been applied. Such treatments were helpful in revealing the genetic structure of European *Reticulitermes* species (Clement 1984) and *Aedes aegypti* (Saul et al. 1976).

In earlier research on esterases of *Coptotermes formosanus* (Wang & Grace 2000), we identified at least five esterase loci, each with one or

\(^1\)Department of Entomology, University of Hawaii at Manoa, 3050 Malle Way, Room 310, Honolulu, HI 96822.

\(^2\)Author for reprint requests.
two alleles. Unfortunately, the esterase gel patterns of C. formosanus were not adequate to generate useful genetic information because some of the products of these esterase loci were so strongly expressed that we could not determine which band was produced by which loci.

In the present study, four esterase inhibitors previously used in the genetic study of Aedes aegypti (Saul et al. 1976) were applied to clarify the gel patterns of C. formosanus. The objectives of this study were to determine which of these four inhibitors provided the clearest banding pattern, and whether unique loci existed that could be used to distinguish among different C. formosanus populations.

MATERIALS AND METHODS

Samples of thirty-six C. formosanus colonies were obtained from six locations: thirteen colonies from Hawaii, of which six were from the island of Oahu, one from Kauai, three from Maui and three from Hawaii; four colonies from New Orleans, Louisiana; four colonies from Lake Charles, Louisiana; six colonies from Florida; six from Hong Kong; and three from Guangzhou, China. Samples were refrigerated at -70°C prior to use.

Ten worker (pseudergate) individuals were randomly selected from each colony and were prepared for electrophoresis. Procedures for sample preparation and electrophoresis were the same as described by Wang & Grace (2000). A 0.1M phosphate buffer of pH 6.5 with alpha- and beta-naphthyl acetate substrates was used as a basic incubation mixture. Four inhibitors (Table 1) were added separately into portions of each sample in the basic incubation mixture, then stained with Fast Blue BB salt.

RESULTS AND DISCUSSION

All gels containing C. formosanus samples with only the basic incubation mixture added and stained with Fast Blue BB salt showed five band zones, and all band zones appeared fixed. These band zones

Table 1. Inhibitors used to clarify esterase gel patterns of Coptotermes formosanus.

<table>
<thead>
<tr>
<th>Type of esterase</th>
<th>Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholinesterase</td>
<td>Eserine 2 x 10⁻⁴ M</td>
</tr>
<tr>
<td></td>
<td>p-hydroxy mercuribenzoate 10⁻⁴ M</td>
</tr>
<tr>
<td>A</td>
<td>diethyl-p-nitrophenyl phosphate 10⁻⁵ M</td>
</tr>
<tr>
<td></td>
<td>(Paraoxon)*</td>
</tr>
<tr>
<td>B</td>
<td>P-phenyl propionic acid 10⁻² M</td>
</tr>
</tbody>
</table>

*Paraoxon has an effect on the gel patterns produced by homogenate of C formosanus.
were labeled Est-1, Est-2, Est-3, Est-4 and Est-5, according to their mobility from the origin.

All gels with termite samples incubated with the basic incubation mixture and either eserine or p-hydroxymercuribenzoate or beta-phenyl propionic acid (stained with Fast Blue BB salt) also showed the same five band zones as the samples to which no inhibitors were added.

All gels with the basic incubation mixture and Paraoxon (stained with Fast Blue BB salt) showed only three band zones. The products of the Est-4 and Est-5 loci were blocked by this inhibitor (meaning that bands for these two loci did not appear), so that only Est-1, Est-2, and Est-3 were visible. Of these three band zones (Fig. 1), we previously identified

Fig. 1. Esterase gel pattern of *Coptotermes formosanus* after treatment with Paraoxon, an inhibitor that blocks the products contributed by Est-4 and Est-5.
the Est-1 band as produced by symbiotic gut protozoans of C. formosanus (Wang & Grace 2000). Thus, only two loci of C. formosanus were retained after the use of Paraoxon.

Among these two esterase loci (Est-2 and Est-3) visible after Paraoxon treatment, no variation was detected (Fig. 2) except for color differences between gels containing samples from different locations. Different colors in similar banding patterns may indicate that different loci are present. The bands produced by Est-3 from all samples at the six locations were red, indicating that Est-3 was sensitive to the beta-naphthyl acetate substrate and was fixed in all populations. Samples from Guangzhou, Hong Kong, Hawaii and Lake Charles showed grey color bands at the Est-2 position indicating Est-2 in these populations was sensitive to the alpha-naphthyl acetate substrate. However, the C. formosanus samples from the New Orleans and Florida populations showed reddish color bands at the Est-2 position indicating they were sensitive to the beta-naphthyl acetate substrate.

Fig. 2. Comparison of esterase gel patterns of C. formosanus from two different populations. Although not visible in this monochrome illustration, the Est-2A band is grey, and the Est-2B band is reddish in color. This indicates that they are two different loci, and that Est-2A is sensitive to alpha-naphthyl acetate, while Est-2B is sensitive to beta-naphthyl acetate substrate.
Based upon the color differences apparent at the Est-2 position in the
C. formosanus samples from different locations, we concluded that
there are two different loci present. We designated the alpha-naphthyl
acetate sensitive locus in the Est-2 position which was present in the
Guangzhou, Hong Kong, Hawaii and Lake Charles populations as
Est-2A; and the beta-naphthyl acetate sensitive locus in the Est-2
position which was present in the New Orleans and Florida populations
as Est-2B (Fig. 2).

These results suggest that there were at least two introductions of C.
formosanus into the United States, each from a different source. The
two Louisiana C formosanus populations in Lake Charles and New
Orleans appear to represent separate introductions and to have re-
mained isolated from each other; while the population of C. formosanus
in Florida appears to be related to the population from New Orleans.
Korman & Pashley (1991) also concluded that populations from Florida
and New Orleans were closely related. Further work with additional
enzyme systems is in progress to elucidate the relationships among
these geographically distinct termite populations.

ACKNOWLEDGMENTS

We are grateful to S. Saul and S. McCombs, University of Hawaii, for
helpful suggestions on the work and comments on the manuscript. We
thank the Guangdong Entomological Institute, M. Crosland (Chinese
University of Hong Kong), G. Henderson & J. Chen (Louisiana State
University), and N.Y. Su (University of Florida) for providing C.
formosanus samples. Funding was provided by USDA Forest Service
Extramural Research Cooperative Agreement PSW-93-0041 CA and
USDA-ARS Specific Cooperative Agreements 58-6615-4-037 and
58-6435-8-107. This is Journal Series No. 4459 of the College of
Tropical Agriculture & Human Resources.

REFERENCES

Clement, J.L. 1981. Enzymatic polymorphism in the European populations of
various Reticulitermes species (Isoptera). In P.E. Howse, J.L. Clement,
Clement, J.L. 1984. Diagnostic alleles and systematics in termite species of the
relationships among cuticular hydrocarbon phenotypes of Zootermopsis
species (Isoptera: Termopsidae). Annals of the Entomological Society of
America 84:1-9.

