Creating Installation Guidelines for A Particle Barrier for Formosan Subterranean Termites (Isoptera: Rhinotermitidae)

by

Julian R. Yates III¹, J. Kenneth Grace¹ & James N. Reinhardt²

The Formosan subterranean termite, *Coptotermes formosanus* Shiraki, is Hawaii's most economically important insect pest. For many decades, soil termiticide applications have been the principle means of preventing infestations by this insect. Residents of Hawaii have been documented as using more pesticides in and around the home than residents of other urban areas in the United States (Otagaki et al. 1970), and repeated soil treatments have contributed to this unfortunate situation. The frequency of these treatments also escalated (Tamashiro et al. 1990a) when cyclodiene termiticides were banned and replaced with insecticides having less residual activity (Tamashiro et al. 1990b, Grace et al. 1993a). With the advent of these newer termiticides also came shorter termiticide warranties and sometimes repeated treatments within a warranty period due to inadequate initial treatment and/or termiticide failure.

More recently, however, physical barriers consisting of graded gravel or sand particles have been developed and tested for efficacy with several species of subterranean termites (Grace & Yamamoto 1993b, Tamashiro et al. 1987a, 1987b, 1990a, 1991, Smith & Rust 1990, French & Ahmed 1993 French 1991, 1994, Ahmed & French 1996 Lewis et al. 1996, Su et al. 1991, 1992, Ebeling & Pence 1957, Ebeling & Forbes 1988, Miles 1997a, 1997b, Pallaske & Igarashi 1991). The Basaltic Termite barrier (BTB) was developed at the University of Hawaii and commercialized in Hawaii in 1987. However, its use as a substitute for termiticides has remained limited for a number of reasons. These include consumer unawareness of the product, a slight initial cost advantage for soil insecticide treatments, some unwillingness on the part of the pest control industry to accept and implement this non-chemical technology, and the absence of a BTB performance warranty from the licensed manufacturer. Architects and building contractors have also frequently had little understanding of installation requirements for this barrier, and improper installations have resulted in

¹Department of Plant & Environmental Protection Sciences, University of Hawaii at Manoa, 3050 Maile Way, Room 310, Honolulu, HI, 96822.
²Architectural Diagnostics, Ltd., 1001 Bishop Street, Suite 1100, Honolulu, HI, 96813.
several failures. Subsequent evaluations of these faulty installations identified two problem areas: (1) the BTB was installed as a layer that was less than four inches thick (as is recommended), and/or (2) the BTB was contaminated with soil and rocks during the installation process. These evaluations led to the development of a 16-minute VHS video tape (Yates 1997) on proper pre-construction BTB installation beneath concrete slabs and as backfill for hollow block retaining walls. Detailed installation guidelines for several pre- and post-construction applications were also developed (Yates et al. 2000) and are now available to contractors, architects and homeowners.

ACKNOWLEDGMENTS

This paper was presented in a symposium entitled "Current and Future Trends of Termite Management" at the XXI International Congress of Entomology, Iguassu Falls, Brazil, August 20-26, 2000. For specific guidelines for installation of the Basaltic Termite Barrier, the reader is referred to Yates et al. (2000). Development of these guidelines and symposium participation were partially supported by McIntire-Stennis and Cooperative Extension funds, and by USDA-ARS Specific Cooperative Agreement 58-6615-9-018. This is Journal Series No. 4597 of the College of Tropical Agriculture and Human Resources.

REFERENCES


Ebeling, W., & R.J. Pence 1957. Relation of particle size to the penetration of subterranean termites through barriers of sand or cinders. J. Econ. Entomol. 50: 690-692.


