Integration of Rainwater Catchment with Fire Suppression Systems

By
E. W. Bob Boulware, P.E., M.B.A.
Design-Aire Engineering, Inc.
Indianapolis, Indiana, USA
www.design-aire.com
FIGURE 10.11.8 Basic Components of a Wet-Pipe Sprinkler System (for SI units: 1 in. = 25.4 mm)
FIGURE 10.11.7 Hypothetical Sprinkler System
Installation Illustrating Various Water Supply Sources and System Attachments

Source:
NFPA Fire Protection Handbook
Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

<table>
<thead>
<tr>
<th>OCCUPANCY CLASSIFICATION</th>
<th>SPRINKLER SYSTEM</th>
<th>HOSE STREAM ALLOWANCE</th>
<th>DURATION OF SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESIGN DENSITY L/min/m² (GPM/ft²)</td>
<td>DESIGN AREA m² (ft²)</td>
<td></td>
</tr>
<tr>
<td>Light Hazard</td>
<td>4.1 (0.10)</td>
<td>280 (3000)</td>
<td>950 (250)</td>
</tr>
<tr>
<td>Ordinary Hazard Group 1</td>
<td>6.1 (0.15)</td>
<td>280 (3000)</td>
<td>1900 (500)</td>
</tr>
<tr>
<td>Ordinary Hazard Group 2</td>
<td>8.2 (0.20)</td>
<td>280 (3000)</td>
<td>1900 (500)</td>
</tr>
<tr>
<td>Extra Hazard Group 1</td>
<td>12.2 (0.30)</td>
<td>280 (3000)</td>
<td>2840 (750)</td>
</tr>
<tr>
<td>Extra Hazard Group 2</td>
<td>16.3 (0.40)</td>
<td>280 (3000)</td>
<td>2840 (750)</td>
</tr>
</tbody>
</table>

Note: The protection requirements identified in Table 4-1 are based on standard commercial practices followed throughout civilian industry for highly protected risk (HPR) properties. Table 4-1 represents the minimum requirements necessary to establish minimum comprehensive life, mission, and property loss prevention. Table 4-1 was adapted as a result from detailed studies by Factory Mutual of loss experience from 1956 to 1965, loss experience in selected occupancies from 1966 to 1977 and from 1981-1990, and fire test data.
For a Light Hazard Application:

- Sprinkler Volume: Design Density (.1 gallons per minute (gpm) / square foot) x Design Area (3000 sf) = 300 gpm.
For a Light Hazard Application:

- Design Density (0.1 gallons per minute (gpm) / square foot) x Design Area (3000 sf) = 300 gpm.

- Fire Hose Operation: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm) = 550 gallons / minute
For a Light Hazard Application:

- **Design Density (.1 gallons per minute (gpm) / square foot) x Design Area (3000 sf)**
 \[\text{Design Density} \times \text{Design Area} = 300 \text{ gpm} \]

- **Fire Hose Operation:** The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is \((300 \text{ fpm} + 250 \text{ gpm}) = 550 \text{ gallons / minute} \)

- **Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes) = 33,000 gallons**
For a Light Hazard Application:

- **Design Density** (.1 gallons per minute (gpm) / square foot) x **Design Area** (3000 sf) = 300 gpm.

- **Fire Hose Operation**: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, **Total Design Flow** is (300 fpm + 250 gpm) = 550 gallons / minute

- **Flow duration** is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes) = 33,000 gallons

- **Tank volume** is (33,000 gallons/ 7.481 gallons per cubic foot) = 4411 Cubic Feet.
For a Light Hazard Application:

- **Design Density (.1 gallons per minute (gpm) / square foot) x Design Area (3000 sf)**

 \[\text{Design Density} = 0.1 \text{ gpm/sf} \times 3000 \text{ sf} = 300 \text{ gpm} \]

- **Fire Hose Operation**: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm)

 \[= 550 \text{ gallons / minute} \]

- **Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes)= 33,000 gallons**

- **Tank volume is (33,000 gallons/ 7.481 gallons per cubic foot) = 4411 Cubic Feet.**

- **Size of tank (Cubic Feet) = (length * width * height)**
For a Light Hazard Application:

- **Sprinkler Volume:** Design Density (4.1 liter / m²) is the volume of water needed to be delivered to the Design Area (289 m²)
 \[= 1148 \text{ liters / minute}\]

- **Hose Volume:** The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation. In this case,
 \[= 2100 \text{ liters / minute}\]

- **Flow duration** is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be
 \[= 125,000 \text{ liters}\]

- **Tank volume** is
 \[= 125 \text{ Cubic Meters}\]
Spray Pattern
NFPA 13 A.8.5.5.1
FIGURE 10.7.16 Vertical-Shaft-Turbine-Type Pump Installation. Note: The distance between the bottom of the strainer and the bottom of the wet pit should be one-half of the pump bowl diameter but less than 12 in. (305 mm).
CISTERN PIPING WITH FIRE RESERVE

NOT TO SCALE
For Further Information

Contact

E. W. Bob Boulware, P.E., M.B.A.
Design-Aire Engineering, Inc.
Indianapolis, Indiana, USA
www.designaire.com
Toll Free 866-515-9090
Questions ??