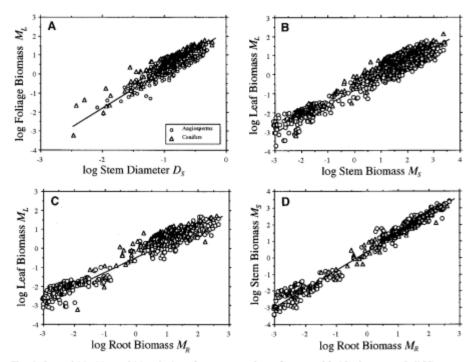
Carbon allocation and partitioning

NREM680

Ecosystem Ecology


2014

Confusion

- Carbon allocation from Dickson & Isenbrands (1993):
 - "Biomass not allocated," but "accumulated the end result of the allocation process."
 - Translocation and transport should be limited to metabolic process description
 - Carbon allocation: "distribution of carbon within the plant to different plant parts" where allocation is an adaptive response to resource stress
 - Carbon partitioning: division of carbon into metabolic, structural or storage pools

More confusion:

Carbon allocation (review by Litton et al 2007):
Patterns in live biomass (Enquist & Niklas 2002)

Fig. 1. $D_{\rm S}$ and $M_{\rm L}$, $M_{\rm S}$, and $M_{\rm R}$ relations for average plants from worldwide data sets. Solid lines are reduced major axis regression curves of log-transformed data. Angiosperm and conifer species are denoted by circles and triangles, respectively. (**A**) $M_{\rm L}$ versus $D_{\rm S}$ (trunk diameter at breast height). (**B**) $M_{\rm L}$ versus $M_{\rm S}$. (**C**) $M_{\rm L}$ versus $M_{\rm R}$ ($r^2 = 0.861$, n = 338, F = 2439, P < 0.0001). (**D**) $M_{\rm S}$ versus $M_{\rm R}$. See Table 1 for additional statistics. Note, the relatively larger spread in (**B**) and (**C**) is due to differences between Angiosperms and Gymnosperms.

More confusion:

- Carbon allocation (review by Litton (2007)):
 - Patterns in live biomass (Enquist & Niklas (2002)
 - Flux (Keith et al (1997)): Both pools and fluxes

	Unfertilized	P-fertilized	SED*	Р
1. Soil CO ₂ efflux	7.11	6.55	0.137	<0.001
2. Litterfall	2.46	2.77	0.294	n.s.
3. Coarre root production	0.45	0.60	0.086	n.s.
4. Belowground carbon allocation 4 = [(1-2)+3)]	5.10	4.38	0.336	<0.01

Table 4. Components of annual belowground carbon allocation (tC ha-1)

* Standard Error of the Difference of the means.

More confusion:

- Carbon allocation (review by Litton et al 2007):
 - Patterns in live biomass (Enquist & Niklas 2002)
 - Flux (Keith et al (1997)): Both pools and fluxes
 - Distribution of flux (Giardina et al 2003):

$$\mathbf{TBCA} = \mathbf{F}_{\mathrm{S}} + \mathbf{F}_{\mathrm{E}} - \mathbf{F}_{\mathrm{A}} + \Delta \mathbf{C}_{\mathrm{S}} + \Delta \mathbf{C}_{\mathrm{R}} + \mathbf{C}_{\mathrm{L}}$$

where:

 F_S = soil surface CO_2 efflux

 F_E = leached C

 $F_A = litterfall$

 $\Delta C_{\rm S}$ = change in C in mineral soil

 ΔC_R = increment of C in root biomass

 C_L = Litter layer mass

Terminology

- Biomass: amount of material present (eg. g, kg, etc.)
- Flux: Movement of carbon to specific component of the ecosystem per unit time (eg. g yr⁻¹)
- Pools: amount of material in a component
- Partitioning: GPP/amount used by component (proportion or percentage)
- Allocation: general term for where and how much carbon is throughout the ecosystem (biomass) and where it is moving to/from (flux and partitioning)

Estimation of components

- Mass Balance Approach
- Gross Primary Production (GPP)
 - GPP = total assimilated $CO_2 (R_{leaf(day)} + photorespiration)$
 - GPP = ANPP + APR + TBCF
- Annual Net Primary Production (ANPP)
- Above Ground Respiration (APR)
- Total Below Ground Carbon Flux (TBCF)

ANPP

• ANPP =
$$\mathbf{F}_{A} + \mathbf{F}_{W} + \Delta \mathbf{C}_{C} + \Delta \mathbf{C}_{W}$$

- where:
- F_A = flux of C associated with litterfall
- F_W = flux of C associated with mortality
- ΔC_C = increment of C associated with C content in live leaves
- ΔC_W = increment of C associated with above ground biomass

Simplified as:

 $ANPP_{total} = ANPP_{foliage} + ANPP_{wood}$

- Where:

- ANPP_{foliage} =
$$F_A + \Delta C_C$$

- $ANPP_{wood} = F_W + \Delta C_W$

from Giardina et al (2003)

http://www.crestmonsoon.org/maemoh/Photo/Litter.JPG

Litterfall

- Annual (or other time scale) C inputs to forest floor
- Estimate LAI_{max} (corrected for herbivory losses)
- Can be broken up into components
- Rule of thumb: detect 20% difference in litterfall at a site
 - For example, 15-20 for deciduous forest type

Litterfall

- Processing
 - Subsample for LA if desired (Leaf Mass per Area)
 - Dried 24-48 hours at 70°C
 - Sort (plant part, species, etc.)

$P_{c} = (M_{c} (1-H) C_{c} (P_{L,f}/P_{L,I})/A)$

where:

- P_c = Annual production of canopy components
- M_c = annual dry mass of litter
- H = fraction of leaf area lost to herbivory
- C_c = Carbon fraction (typically 50%)
- $P_{L,f}$ = average leaf mass per area of fresh leaves
- $P_{L,I}$ = average leaf mass per area of leaves in the litter
- A = total basket area

Litterfall

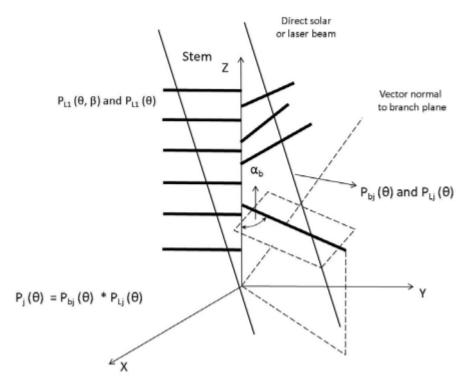
- Complications:
 - System (e.g. deciduous broadleaf vs. coniferous)
 - No measurement of pollen or VOCs
 - Timing (Northern vs. Southern Hemisphere)
 - Decomposition in basket
 - Climate
 - Diameter of twigs (<1 cm typical)
 - Labor

ANPP

- ANPP = $\mathbf{F}_{A} + \mathbf{F}_{W} + \Delta \mathbf{C}_{C} + \Delta \mathbf{C}_{W}$
 - where:
 - F_A = flux of C associated with litterfall
 - F_W = flux of C associated with mortality
 - Added back into estimates
 - Can account for 1-2% per year (Kloeppel et al 2007)
 - Think about length of study

ANPP

- ANPP = $\mathbf{F}_{A} + \mathbf{F}_{W} + \Delta \mathbf{C}_{C} + \Delta \mathbf{C}_{W}$
 - where:
 - F_A = flux of C associated with litterfall
 - F_W = flux of C associated with mortality
 - ΔC_C = increment of C associated with C content in live leaves
 - Monthly measurements of LAI with LAI-2000 Plant Canopy Analyzers (Li-COR)
 - During overcast, calm conditions
 - Linear interpolation for months that were missed because of climate conditions
 - Overlap and clumping corrected using allometric relationship between DBH and LAI


Leaf Area Direct Measure

- Direct Measure (Litterfall and destructive harvest)
- Used for development of indirect measures
- Most accurate
- Total mass/area = LAI x LMA (for each species)???
- Allometric relationships, such as LAI and DBH
- Complications:
 - Species
 - Forest composition
 - Canopy position
 - Climate
 - Weather

Leaf Area Indirect Measure

- Effective LAI (L_e) – assume random distribution of foliage

Figure 3. Schematic diagram illustrating the multi-layer theoretical model to calculate the gap fraction.

Leaf Area Indirect Measure

- Effective LAI (L_e) assume random distribution of foliage
 - Canopy gap fraction
 - Includes woody components
 - Can convert for non-random distributions (see Kucharik et al (1999) and Gower et al (1999))
 - Often 30-70% of true LAI
 - Without conversion, Plant Area Index (PAI)
 - Can subtract Wood Area Index from PAI to get LAI
- Complications:
 - Forest type (boreal forests have high proportions of wood area to total plant area)
 - Overcompensation (LAI \neq PAI -WAI)
 - Weather
 - Upper limit (about 5-6)

LA Indirect Measure

- Digital Camera Hemispherical
 - Assumes random distribution
 - Diffuse sky conditions
 - Correction factors (L $_{\rm e}$ -> PAI) unless light environment is only goal
 - Software (eg. CIMES: <u>http://jmnw.free.fr/</u>)
 - Key concepts:
 - Consistent exposure
 - Correct for camera and lens
 - Correct for clumping
- LAI 2000 plant canopy gap analyzer (Li-COR)
 - Instantaneous processing
 - Above canopy reference required
 - Underestimation in heterogeneous canopies

LAI 2000 Plant Canopy Analyzer

http://envsupport.licor.com/images/env/product_list_photos/LAI-2000_lg.jpg

ANPP

- ANPP = $\mathbf{F}_{A} + \mathbf{F}_{W} + \Delta \mathbf{C}_{C} + \Delta \mathbf{C}_{W}$
 - where:
 - F_A = flux of C associated with litterfall
 - F_W = flux of C associated with mortality
 - ΔC_C = increment of C associated with C content in live leaves
 - ΔC_W = increment of C associated with above ground biomass
 - Monthly measurement of DBH, input into site specific allometric equation for DBH and woody biomass

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$

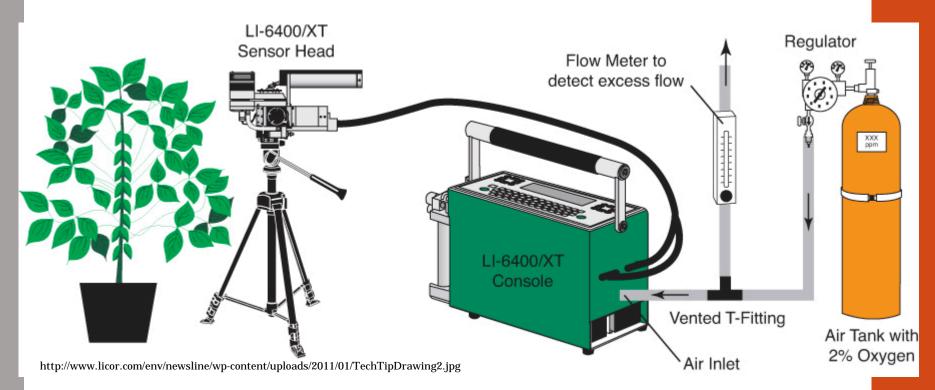
- where:
- L_{RC} = sum of construction
- L_{RM} = sum maintenance respiration
- W_R = respiration of aboveground wood

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$

- where:
- L_{RC} = sum of construction
 - How much energy is expelled in the formation of structural and metabolic compounds (Baruch & Goldstein 1999)
 - Assumed cost to be 25% of leaf NPP, from other research. Leaf NPP = $F_A + \Delta C_C$ (Giardina et al 2003)

- $APR = L_{RC} + L_{RM} + W_{R}$
 - where:
 - L_{RC} = sum of construction
 - L_{RM} = sum maintenance respiration
 - Estimated by 'periodically' (4 times) measuring CO_2 efflux at night from intact leaves
 - Used towers
 - Plexiglass chambers with PPSystems CIRAS-1 in open system mode
 - Between 21:00 and 02:00
 - Four positions in the canopy
 - $L_{RM} = N_C x a x$ (seconds of darkness in 1 year) where N_c is annual average N content of forest canopy (mol N m⁻²) and a is a dark respiration coefficient produced from CIRAS-1 measurements
 - N_c estimated from LAI and from measurement of SLA and Leaf N from harvested leaves

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$


- where:
- L_{RC} = sum of construction
- L_{RM} = sum maintenance respiration

http://www.ppsystems.com/images/products/EGM-4_CPY-4_web.jpg

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$

- where:
- L_{RC} = sum of construction
- L_{RM} = sum maintenance respiration

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$

- where:
- L_{RC} = sum of construction
- L_{RM} = sum maintenance respiration
- W_R = respiration of aboveground wood
 - Same PPSystems CIRAS-1 system
 - Applied allometrically derived equation for woody biomass and multiplied by seconds in the year to get flux

•
$$\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$$

- where:

- L_{RC} = sum of construction
- L_{RM} = sum maintenance respiration
- W_R = respiration of aboveground wood

http://www.ese.u-psud.fr/IMG/jpg/Chambre-resp_site-4.jpg

- $\mathbf{APR} = \mathbf{L}_{\mathbf{RC}} + \mathbf{L}_{\mathbf{RM}} + \mathbf{W}_{\mathbf{R}}$
 - where:
 - L_{RC} = sum of construction
 - L_{RM} = sum maintenance respiration
 - W_R = respiration of aboveground wood

• Sources of error:

- Assumed cost of construction, but differs and can be important (Baruch & Goldstein 1999)
- Scaling based on allometric equations: importance of site specific equations
- Operator
- Planning
- Leakage

- TBCF = $F_S + F_E F_A + \Delta C_S + \Delta C_R + C_L$
 - where:
 - F_S = soil surface CO_2 efflux
 - CIRAS-1 Soil Respiration Chamber
 - measured rate x seconds in a month

- TBCF = \mathbf{F}_{S} + \mathbf{F}_{E} \mathbf{F}_{A} + $\Delta \mathbf{C}_{S}$ + $\Delta \mathbf{C}_{R}$ + \mathbf{C}_{L}
 - where:
 - F_S = soil surface CO_2 efflux
 - F_E = leached C
 - Assumed to be less than 1% of TBCF (per year) in closed canopy forest (Giardina & Ryan 2002)

- TBCF = $F_S + F_E F_A + \Delta C_S + \Delta C_R + C_L$
 - where:
 - F_S = soil surface CO₂ efflux
 - F_E = leached C
 - F_A = litterfall

- TBCF = $F_S + F_E F_A + \Delta C_S + \Delta C_R + C_L$
 - where:
 - F_S = soil surface CO_2 efflux
 - F_E = leached C
 - F_A = litterfall
 - $\Delta C_{\rm S}$ = change in C in mineral soil (see Burton & Pregitzer 2008)
 - Site specific
 - Volumetric pits
 - Combustion at high temperature (1000°C) with elemental analyzer
 - Problems: removal of inorganic C, stone%, organic soils, forest heterogeneity
 - Some assume no change below a certain depth (Giardina & Ryan 2002)

• TBCF =
$$F_S + F_E - F_A + \Delta C_S + \Delta C_R + C_L$$

- where:
- F_S = soil surface CO_2 efflux
- F_E = leached C
- F_A = litterfall
- ΔC_S = change in C in mineral soil
- ΔC_R = increment of C in root biomass
 - Coarse roots (>10 mm diameter): relationship between coarse root biomass and aboveground biomass
 - 20-30% of aboveground woody biomass (Burton and Pregitzer 2008)
 - Dead roots important
 - Fine roots
 - Some assume no net change during course of study and overall C stock can be low compared to other components (Burton and Pregitzer 2008; Giardina et al 2003)
 - Some argue that models must take this into account (Wolf et al 2011)
 - Sorting, labor intensive

- TBCF = $F_S + F_E F_A + \Delta C_S + \Delta C_R + C_L$
 - where:
 - F_S = soil surface CO₂ efflux
 - F_E = leached C
 - F_A = litterfall
 - ΔC_S = change in C in mineral soil
 - ΔC_R = increment of C in root biomass
 - C_L = Litter layer mass
 - Litter traps, dried samples, assume 50%~C

Allocation and Partitioning

- Individual level:
 - Above-ground:below-ground
 - DBH/Height
 - Fine Root:LA
- Individual as part of NPP (from Wolf et al 2011)
 - Importance of ontogeny
 - Gfol (NPPfol/density of stand)
 - Gfroot (NPPfroot/density of stand)
 - Gcroot (NPPcroot/density of stand)
 - Gstem (NPPstem/density of stand)
- Stand level (from Nouvellon et al 2012)
 - TBCF/GPP
 - ANPP/TBCF
 - ΔB_w /ANPP
 - $\Delta B_w/GPP$

"Carbon allocation in forest ecosystems" by Litton et al 2007

- Annual carbon flux and partitioning cannot be inferred by biomass ratios.
 - Multiyear accumulated wood
 - Storage in roots
 - Short lived leaves and fine roots
 - Annual plants could be an exception

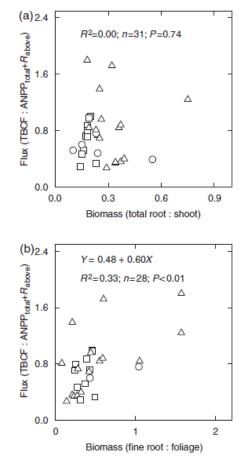


Fig. 2 Carbon flux is poorly related to biomass in forest ecosystems. Biomass ratios and flux (TBCF: ANPP_{total} + R_{abover} an ecosystem carbon flux analog to root:shoot biomass) were not elated for (a) total root:shoot across diverse forest ecosystems hat represent gradients in resource availability, stand age and competition. A somewhat better relationship existed between (b) lux and fine root:foliage biomass. Triangles are needleleaf evergreen forests, circles are temperate deciduous forests, and squares are broadleaf evergreen forests. TBCF, total belowground carbon flux.

- There is a correlation between different component fluxes and GPP:
 - foliage production
 - foliage respiration
 - wood production
 - wood respiration
 - total belowground carbon flux

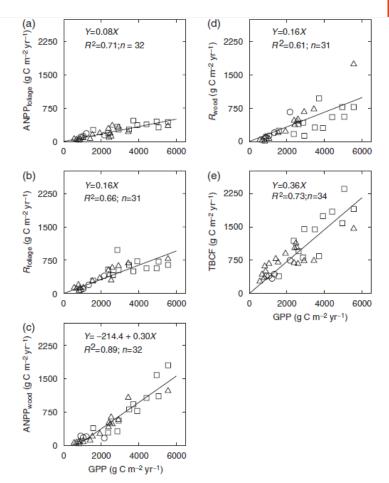
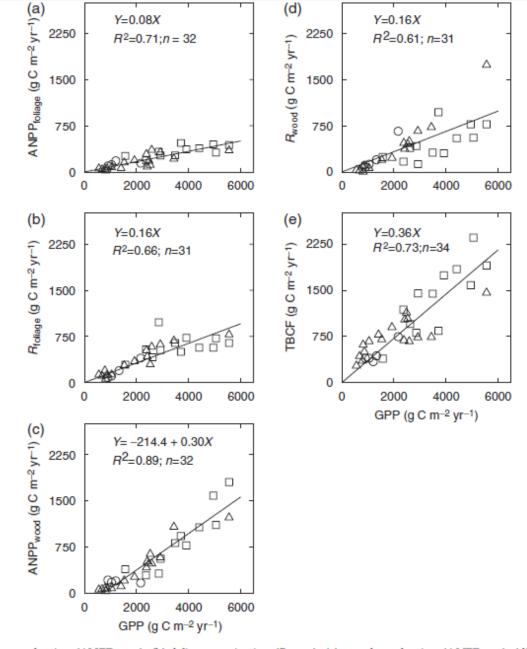



Fig. 4 (a) Foliage production (ANPP_{foliage}), (b) foliage respiration ($R_{foliage}$), (c) wood production (ANPP_{wood}), (d) wood respiration (R_{wood}), and (e) total belowground carbon flux (TBCF) all exhibited strong linear relationships with GPP across diverse forest ecosystems (P < 0.01). Zero-intercept regressions were used where the constant was not significant at $\alpha = 0.05$. Triangles are needleleaf evergreen forests, circles are temperate deciduous forests, and squares are broadleaf evergreen forests. GPP, gross primary productivity.

Fig. 4 (a) Foliage production (ANPP_{foliage}), (b) foliage respiration ($R_{foliage}$), (c) wood production (ANPP_{wood}), (d) wood respiration (R_{wood}), and (e) total belowground carbon flux (TBCF) all exhibited strong linear relationships with GPP across diverse forest ecosystems (P < 0.01). Zero-intercept regressions were used where the constant was not significant at $\alpha = 0.05$. Triangles are needleleaf evergreen forests, circles are temperate deciduous forests, and squares are broadleaf evergreen forests. GPP, gross primary productivity.

- Total belowground carbon flux increases with aboveground net primary productivity
 - ANPP may not accurately predict TBCF

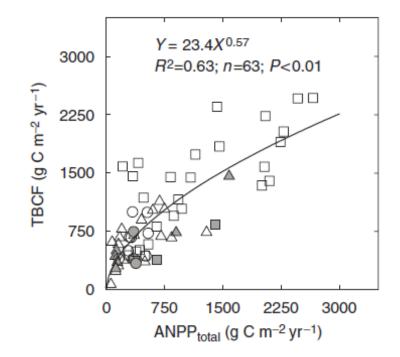
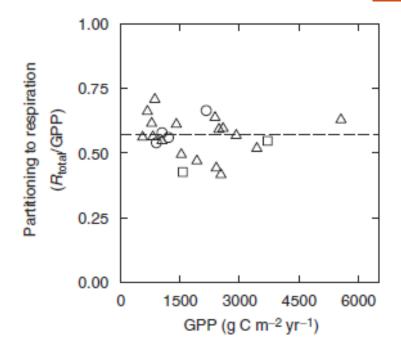
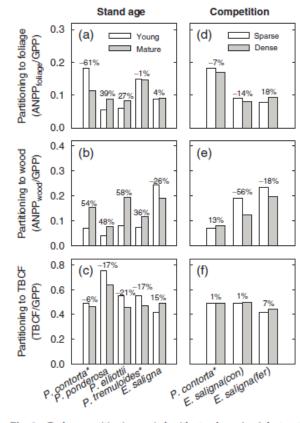


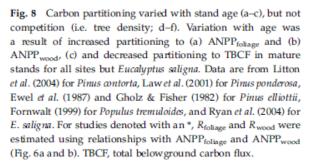
Fig. 5 Across forests, carbon flux to belowground (TBCF) increased with total aboveground net primary production (ANPP_{total}). TBCF was estimated as soil-surface CO₂ efflux minus aboveground litterfall plus any measured changes in soil carbon pools for all studies except those indicated with gray fill, where TBCF was estimated as BNPP_{root} + R_{root} . Triangles are needleleaf evergreen forests, circles are temperate deciduous forests, and squares are broadleaf evergreen forests. TBCF, total belowground carbon flux.

- Autotrophic respiration is strongly and positively related to GPP
- Again, the relationship differs between components
 - Less increase in wood respiration than foliage respiration per increase in GPP
 - Wood has less metabolic activity

- GPP partitioning to respiration is constant across a wide range of GPP in forest ecosystems
 - Averge 57% of GPP
- Does not vary with resource availability, competition or stand age




Fig. 7 There was a strong central tendency in partitioning to respiration (R_{total}) across diverse forest ecosystems that represent gradients in resource availability, stand age and competition [0.57 ± 0.02 (Mean ± 1 SE)]. The dashed line is the slope of the relationship between GPP and R_{total} ($R_{total} = 0.57 \times \text{GPP}$; $R^2 = 0.95$; n = 23; P < 0.01). However, partitioning to R_{total} did vary across sites – the range for studies analyzed was 42–71%. Triangles are needleleaf evergreen forests, circles are temperate deciduous forests, and squares are broadleaf evergreen forests.


- There were variations across different sites- 42%-71% of GPP
 - 71% boreal spruce
 - 66% boreal pine
 - 68% tropical forest

- GPP partitioning to ANPP increases and to total belowground flux decreases with increasing stand age
 - Exceptions:
 - Eucalyptus saligna in Hawaii
 - Lodgepole pine in Wyoming

- Intraspecific competition (tree density) had no consistent effect on GPP partitioning between ANPP and TBCF
- Increased nutrient and water availability increased partitioning to ANPP and decreased partitioning to TBCF
 - Except P
 - Response to water had more variability

- Priorities do NOT exist for the products of photosynthesis.
 - such that carbon is used first by higher priority tissues and only released to other tissues when those needs are satisfied
 - Because with increased GPP, all pools and fluxes increased.

Partitioning and Climate

	Tropical	Temperate	Boreal
Component fluxes:			
Above ground vegetation:			
(1) Gross photosynthesis of tree foliage (G_p)	3040 ¹	1725	963
(2) Respiration of tree foliage	410 ²	191	2167
(3) Respiration of tree wood	390 ²	196	87 ⁸
(4) Leaf and wood detritus	700 ³	360 ⁴	515
(5) Net biomass increment	170 ³	1504	1105
(6) Transport to roots $(1) - (2) - (3) - (4) - (5)$	1370	828	499
Below ground vegetation:			
(7) Respiration of roots	680 ¹	395	143 ⁶
(8) Net root biomass increment	60 ¹	39	30 ⁶
(9) Root detritus production	630 ¹	395	326
(10) Total ground respiration	1650 ²	753	592
(11) Heterotrophic Respiration (10) - (2) - (3)	970	359	449
(12) Autotrophic Respiration (15) – (11)	1480	782	446
Soil:			
(13) Change in SOM (4) + (9) - (11)	+360	+396	-72
(14) Total C influx (1)	3040	1725	963
(15) Total C efflux (14) - (16)	2450	1140	895
(16) Net ecosystem exchange (NEE)	590	585	68
$(17) N_{\rm p}(1) - (2) - (3) - (7)$	1560	944	517
or $(4) + (5) + (8) + (9)$			
(18) $N_{\rm p}/G_{\rm p}$ (17)/(1)	51%	55%	54%
Mean carbon residence times (years):			
(19) Biomass	16	10	12
(20) Soil and litter	15	10	106
(21) Total ecosystem	29	18	89

¹ from Malhi *et al.* 1998, Malhi *et al.* unpublished data; ² from Meir *et al.* 1996, for another site in Rondonia; ³ from Higuchi *et al.* (1997); ⁴ from Edwards *et al.* 1989; ⁵ from Gower *et al.* 1997; ⁶ from Steele *et al.* 1997; ⁷ from Rayment 1998; ⁸ from Lavigne & Ryan 1997

Table 6. Annual C fluxes (g m⁻² year⁻¹) at the three forest sites

Partitioning and Nutrient Availability

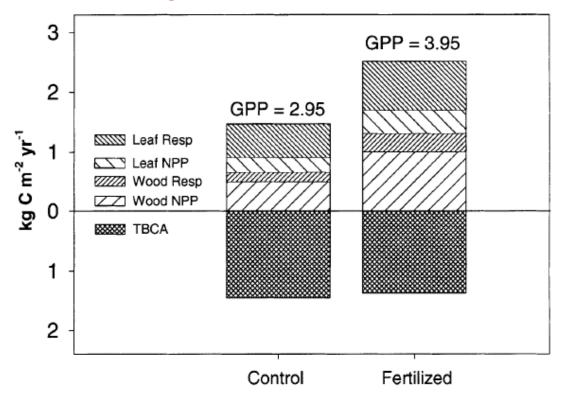
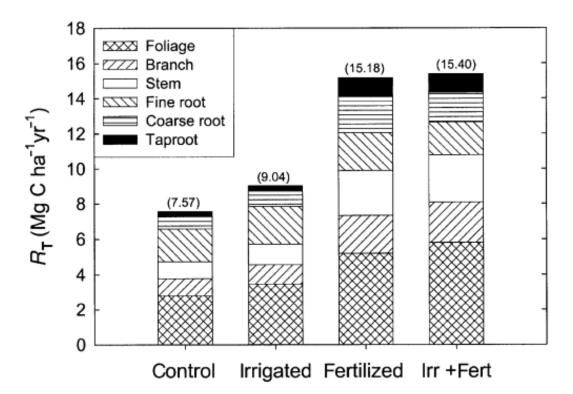
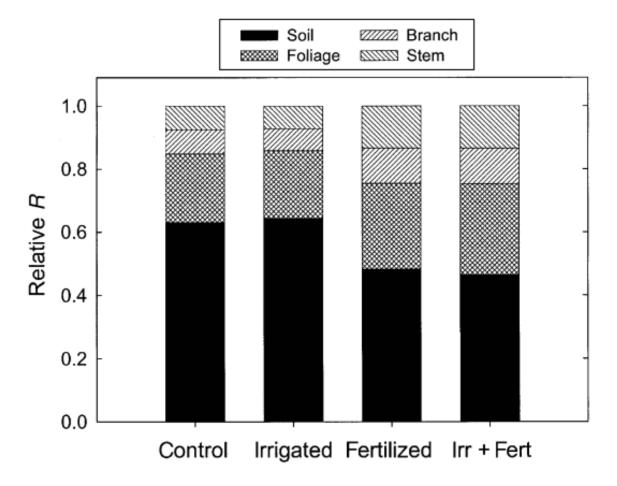



Fig. 1 Gross primary production (mean of three years of postfertilization data) in unfertilized and adjacent fertilized stands of *E. saligna* in Pepe'ekeo, Hawai'i, and the constituent above and belowground components (see the Appendix for term definitions).


from Giardina et al (2003)

Partitioning, Water, and Nutrients

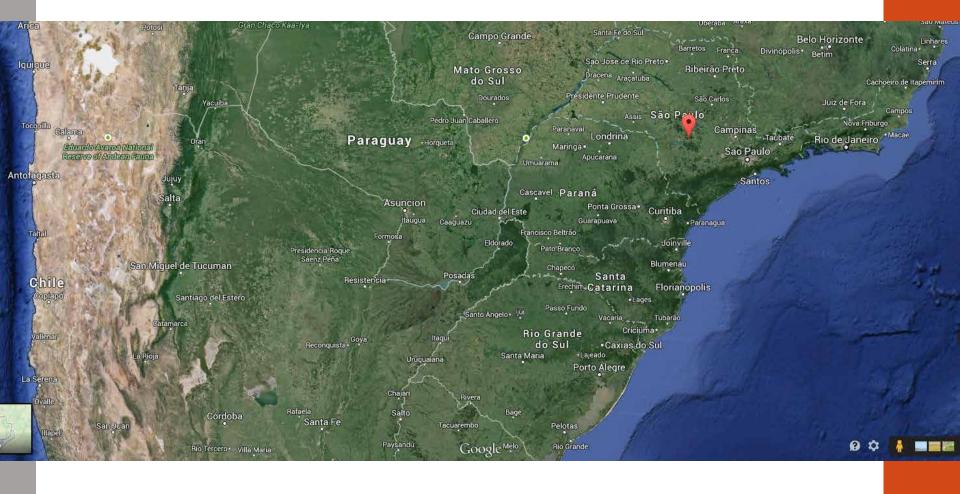
Fig. 2 Mean annual carbon flux from total respiration (R_T) (maintenance plus growth respiration) by tissue component in 12-year-old loblolly pine plantations. Values were generated using Eqns (2) and (3).

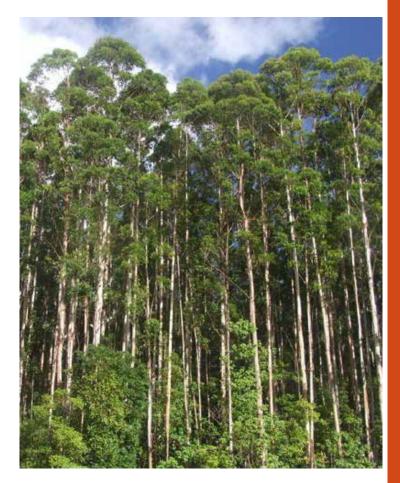
Partitioning, Water, and Nutrients

Fig. 6 Fraction of ecosystem respiration (R_E) generated from soil and aboveground components.

Jean-Pierre Bouillet

- Cirad scientist
- Currently visiting professor at the **University of Sao-Paulo** (USP-Esalq) in Brazil
- Silviculture of mixed-species Eucalyptus plantations
- Diploma (1984) and PhD (1993) in Forest Sciences from Engref, Nancy (France)
- Experience in French Guyana (tree breeding), Madagascar (pine and eucalyptus), Congo (productivity of eucalyptus), and France (management of tropical forest ecosystems)
- Published more than 35 peer-reviewed journal articles


- Yann Nouvellon
 - Department of Atmospheric Sciences at the University of Sao Paulo in Brazil
 - Has 158.79 Impact Points and 74 followers on Research Gate


http://www.researchgate.net/profile/Yann_Nouvellon2/

http://www.cirad.fr/var/cirad/storage/images/site-cirad.fr/actualites/toutes-lesactualites/communiques-de-presse/2011/plantations-d-eucalyptus/63396-1-fre-FR/plantations-d-eucalyptus-combiner-sylviculture-et-genetique-pour-une-hausse-raisonneedes-rendements_lightbox.jpg

- Eucalyptus grandis summary
 - Height: 43-55m
 - Diameter: 122-183cm
 - Growth: 2 m year⁻¹
 - Characteristics: shade intolerant
 - Plantations: >500,000 ha worldwide
 - Uses: pulpwood, poles, pallets, veneer, landscaping
 - Natural distribution
 - Soils: alluvial and volcanic loams
 - 26-33 degrees S
 - Mean minimum temperature from 2-10°C and maximum up to 29°C
 - Rainfall: 1020-1780mm with distinct dry season

- Acacia mangium summary
 - Height: up to 30 m
 - Growth: ~1 m year⁻¹
 - Characteristics: shade intolerant
 - Plantations: extensive worldwide (eg. 1.5 Mha in Asia in 2006)
 - Uses: pulpwood, pallet, timber
 - Natural distribution
 - Soils: alluvial and volcanic, sandy or loamy; tolerates acid (< 4 pH) and low nutrient soils well
 - At the edges of rainforests or coastal plain
 - Mean minimum month from 15-22°C and maximum up to 31-34°C
 - Rainfall: 1500-3000 mm with distinct dry season

Questions: Is lower production in mixed plantations due to a shift in partitioning to TBCF?

Hypotheses:

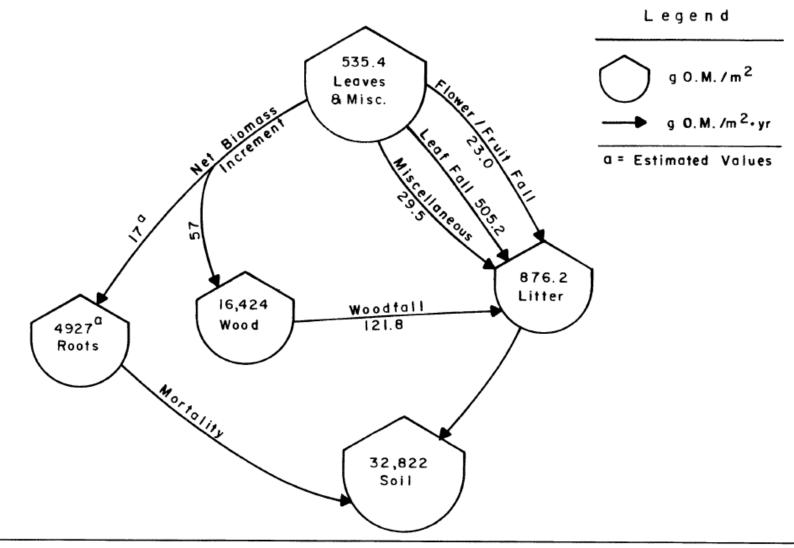
- **1**. Species differences for wood production were partly explained by different C partitioning strategies
- 2. Lower partitioning to above ground biomass mostly explains lower wood production in the mixture in comparison to the eucalypt monoculture

- Tree Growth
 - Mixed plot
 - Eucalyptus grandis dominated
 - Higher growth rate
 - Mean tree height was intermediate
 - Stand basal areas
 - Not different between the 3 treatments
 - Mixed plot
 - Individual basal area
 - *Eucalyptus grandis* greater than in monoculture
 - Acacia mangium less than monoculture
 - Interspecific competition

- Mixed Plot
 - Acacia mangium
 - Higher height/basal area than monoculture
 - Less number of stems
 - Eucalyptus grandis
 - Opposite case
- Total Above Ground Biomass Wood Biomass
 - Affected by stand height
 - Eucalyptus grandis monoculture -highest
 - Mixed Plot- intermediate
 - Acacia mangium monoculture-shortest

- Above Ground Biomass
 - Mixed plot
 - Greatest leaf biomass
 - leaf biomass/Total aboveground biomass
 - Eucalyptus grandis
 - 43% more wood biomass per tree
 - 74% more leaf biomass per tree
 - Acacia mangium
 - 53% less wood biomass
 - 24% less leaf biomass
- No differences in leaf litterfall
- Litterfall accounted for:
 - 24% ANPP Eucalyptus grandis monoculture
 - 22% ANPP Acacia mangium monoculture

- Total Belowground Carbon Flux (TBCF)
 - Cumulative Soil CO₂ efflux (F_{scum})
 - Lowest in Acacia mangium monoculture
 - Highest in the mixed plot
 - 54% more near *Eucalyptus grandis* monoculture
 - Annual litterfall (L_{cum})
 - Lowest in *Acacia mangium* monoculture
 - Less woody litterfal


- Total Belowground Carbon Flux
 - Significantly lower in *Acacia mangium* monoculture than other monoculture
 - Forest Floor Carbon (C_L)
 - Decreased in Acacia mangium monoculture
 - Increased in the mixed plot and *Eucalyptus grandis* monoculture
 - No differences in C efflux from course roots and stumps from previous rotations $(\Delta C_L/\Delta t)$
 - Coarse and medium root biomass increment (ΔB_R)
 - Lowest in *Acacia mangium* monocultre
 - Highest in *Eucalyptus grandis* monoculture

"Carbon Allocation in Monocultures and Mixed Species Plantations in Brazil" by Nouvellon et al 2012					
Ratio	<i>Eucalyptus grandis</i> monoculture (Kg C)	Mixed Plot (Kg C)	<i>Acacia mangium</i> monoculture (Kg C)		
ANPP/TBCF	Higher	Lower	Higher		
	1.6	1.1	1.5		
ΔB_w /ANPP	Higher	Lower	Higher		
	0.76	0.70	0.76		
ΔB_w /TBCF	Higher	Lower	Higher		
	1.3	0.79	1.1		

- GPP was 30% higher in *Eucalyptus grandis* monoculture than the other monoculture
 - Acacia mangium monoculture was the lowest
- GPP in the mixed plot was intermediate
 - 15% lower than *Eucalyptus grandis* monoculture
 - 10% higher than Acacia mangium monoculture

- TBCF/GPP
 - Around 25% for both monocultures.
 - 32% for the mixed plot
- The fraction allocated to above ground wood production (ΔB_w /GPP) was higher than TBCF/GPP in monocultures.
 - Opposite effect in mixed plot

- Leaf Area Index (LAI) and Photosyntheticaly active radiation absorbed by the canopy (APAR)
 - About 35% higher in mixed plot than monocultures
 - No increases in production
 - Lowest light use efficiencies in mixed plot
- Light use efficiencies
 - Higher in *Eucalyptus grandis* monoculture than *Acacia mangium* monoculture

FIGURE 6. Mean annual organic matter (O.M.) budget for two 0.40-ha plots in the colorado forest.

Peter L. Weaver , Peter G. Murphy. 1990. Forest Structure and Productivity in Puerto Rico's Luquillo Mountain. BIOTROPICA 22(1): 69-82

Allocation and Partitioning

- Plasticity/adaptability of ecosystems
- Small vs. large scale lessons
- Biome variation
- Modeling

Citations

- Bernier, P., et al. (2008). Measuring litterfall and branchfall. Field Measurements for Forest Carbon Monitoring, Springer: 91-101.
- Burton, A. J. and K. S. Pregitzer (2008). Measuring forest floor, mineral soil, and root carbon stocks. Field measurements for forest carbon monitoring, Springer: 129-142.
- Dickson, R. E. and J. G. Isebrands (1993). "Carbon Allocation Terminology: Should It Be More Rational?" Bulletin of the Ecological Society of America 74(2): 175-177.
- Enquist, B. J. and K. J. Niklas (2002). "Global allocation rules for patterns of biomass partitioning in seed plants." Science 295(5559): 1517-1520.
- Giardina, C. and M. Ryan (2002). "Soil surface CO2 efflux, litterfall, and total belowground carbon allocation in a fast growing Eucalyptus plantation." Ecosystems 5: 487-499.
- · Giardina, C. P., et al. (2003). "Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest." Global Change Biology 9(10): 1438-1450.
- Keith, H., et al. (1997). "Allocation of carbon in a mature eucalypt forest and some effects of soil phosphorus availability." Plant and Soil 196(1): 81-99.
- Litton, C. M., et al. (2007). "Carbon allocation in forest ecosystems." Global Change Biology 13(10): 2089-2109.
- Maier, C. A., et al. (2004). "Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: the effect of site resources on the stand carbon balance." <u>Global Change Biology 10(8): 1335-1350.</u>
- Maier, C. A., et al. (2004). "Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: the effect of site resources on the stand carbon balance." <u>Global Change Biology 10(8): 1335-1350.</u>
- Ryan, M. G., et al. (2010). "Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation." Forest Ecology and Management 259(9): 1695-1703.
- Sala, O. E. and A. T. Austin (2000). Methods of estimating aboveground net primary productivity. <u>Methods in ecosystem science</u>, Springer: 31-43.
- Smith, M.-L., et al. (2008). Forest canopy structural properties. Field Measurements for Forest Carbon Monitoring, Springer: 179-196.
- Wolf, A., et al. (2011). "Allometric growth and allocation in forests: a perspective from FLUXNET." Ecological Applications 21(5): 1546-1556.
- Peter L. Weaver, Peter G. Murphy. 1990. Forest Structure and Productivity in Puerto Rico's Luquillo Mountain. BIOTROPICA 22(1): 69-82
- Zheng, G. and L. M. Moskal (2009). "Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors." Sensors 9(4): 2719-2745.

"Carbon Allocation in Monocultures and Mixed Species Plantations in Brazil" by Nouvellon et al 2012					
Ratio	<i>Eucalyptus grandis</i> monoculture (Kg C)	Mixed Plot (Kg C)	<i>Acacia mangium</i> monoculture (Kg C)		
ANPP/TBCF	1.6	1.1	1.5		
ΔB_w /ANPP	0.76	0.70	0.76		
ΔB_w /TBCF	1.3	0.79	1.1		