Carbon Cycling - Respiration Processes

* Objective
— Autotrophic respiration (R) in terrestrial ecosystems

e |In this lecture, R =R
— But R IS R

plant

+ Rhetero

ecosystem plant
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e C isthe energy currency of ecosystems

— Plant (autotrophic) production is the base of
food/energy pyramids
* Ecosystem goods and services
* Plant C cycling to a large extent controls CO,
concentrations in the atmosphere
— CO, removed via photosynthesis and returned via
respiration

« Plant-derived C fundamental to belowground
(I.e., soll) processes
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e C enters via photosynthesis

— Gross Primary Production (GPP)

* Net photosynthesis (Gross photo -
R4 during the day)
1. Accumulates in ecosystems (C
sequestration) as: (a) plant
biomass; (b) Microbial biomass
&/or SOM; or (c) animal biomass
2. Returned to the atmosphere via e
(a) respiration (R; autotrophic or
heterotrophic); (b) VOC
emissions; or (c) disturbance

3. Leached from or transferred
laterally to another ecosystem
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*Terrestrial C metabolism = The “breathing” of Earth
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Net primary production: net accumulation (or
loss) of C by primary producers (i.e., plants)

— NPP = GPP - Ry,

Governing equation for photosynthesis:
_A:(Ca'ci)*gs

Respiration is much less well understood than
photosynthesis

— No governing equations
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 Why do plants (or any organism) respire?

— Cellular respiration releases the chemical energy
stored in biomass

» Used to construct new biomass and maintain existing
biomass
— Construction/Growth respiration
— Maintenance respiration

» Used to acquire nutrients
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Rplant = Rgrowth T Rmaint T Rion

— What respires?

« Everything that is alive, all the time

— Non-photosynthetic live biomass all the time; and
photosynthetic biomass (i.e., foliage) at night

— Provides energy for all essential plant processes

* These processes require mitochondrial oxidation of CHO'’s to
make ATP

— NOT “wasted” C
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RgI’OW’[h (ConStrUCtlon) Component ('mw(ctl’lI‘.lu)'uliun (mg(‘g("“();:\rmiuut) I_mg-]g')[:I i:::{llu
— Total C cost = C incorporated ... ' P
into new biomass + C oxidized .. i i
to generate new biomass = 0
— Similar across species Lo ‘" .
— Varies widely by compound leaf b e
» Proteins, lignins, tannins, & lipids o
are expensive oM '
» Protein rich (leaves & seeds) vs. Root - e
structural (woody biomass) Seed/ | . . .
— Ryrowtn = 25% X biomass frut
I I I I I I
e Total C cost =1.23g CHOs per g 243 . 75 &35
of biomass Construction costs (mg g™
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R, .int (Maintenance of existing biomass)
— Maintenance and repair of non-growing tissues
* Protein turnover (~85%)

 Membrane replacement (lipids)
« Maintenance of ion gradients

— ~50% of total R
— Strongly correlated with temperature and N
content

 Why N content?
 Why temperature?
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R, (lon uptake)
— lon transport across membranes

— Often lumped in with R

— 20-50% of R,
e Reduction of NO; to NH,*

— R.__ correlates well with NPP

on
* Increased NPP « increased nutrient uptake

12



Carbon Cycling - Respiration Processes

 What % of GPP goes to R?

— As stands age:

. % of GPP 10 Ryyjiage 7 bUt % to
Ruood 4 SO % of GPP to R

— With increased fertility:

* % of GPP t0 Ry;jqe | BUL % to
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e Does R use a ~constant fraction of GPP???

— Tremendous variability across studies

— Carbon use efficiency (CUE) = NPP/GPP

e 1-CUE =% of GPP used for R
— CUE of 0.43 means 57% of GPP to R
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« CUE0f0.47 (x0.04
S.D.) across 11 forests
— 53% of GPPto R

e Lots of assumptions
that could bias estimate

2000 -

S
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GPP (g C m?yr'™

(Waring et al. 1998)
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* Litton et al. (2007) examined geere T Jel
studies that estimated stand-level % | % t |/
C budgets (34 forests globally) P i

. Total CUE of 0.43 (+ 0.02 S.E.) o

{b) 2000 [ ' T (e) T a

- 57% Of GPP to R T e 7 3000 //"

‘}‘T Y=0.66X

o 5 =042 n=D29 ) | :‘% tﬁ/g
« However, strong variation by §le L e | Bl o
component e T e

ANPP 50 (0 G 2 yr1) MPP (g C m=2yr)

— CUEs of 0.36 (foliage), 0.60 (wood),

0.51 (total aboveground), 0.41 [
(roots), and 0.43 (total stand) E ol .

ANPP g1 (9 C 2y}

(Litton et al. 2007) 16
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o Litton et al. (2007) examined
studies that estimated stand-level

C budgets (34 forests globally) 100 —

 Total CUE 0f 0.43 (+ 0.02S.E.) 2 oms| , :
o - N &)
_ ~57% of GPP to R R Y.
_ _ o § 080 | ﬁé‘ . o -
» Also varied considerably across £ <

sites 5 o0z .

— Total CUE ranged from 0.29 to 0.58 oo . | | |
e 42 -71% of GPPto R 0 1500 3000 4500 6000

GPP (gC m2yr1)

(Litton et al. 2007)
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« CUE may vary by biome j:fj,j ﬁ H
L=

« CUE may vary with stand age
— Apples vs. oranges?

(DeLucia et al. 2007)
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e Lots of recent focus on the

e . . . = F00
SenSItIVIty Of R tO rISIng -'..": 7| s With constant sensitivity to temperature
i 600 + With temperature-dependent sensitivity
temperatu fes E B E:IJD: == \With acclimation to temperature
— Climate change may impact £ 5 400
R (and CUE) gém—
— In turn, would impact C el
sequestration & potentially g 1004
I I o D | | | | | 1
feedback_ Into Cllr_n'ate | o s e i
change (i.e., positive forcing Year
factor) The effect of respiration. Cumulative change in global total terres-

trial biosphere carbon simulated by the GTEC 2.0 model, using differ-
ent temperature dependencies for leaf respiration. See the supporting
online material.

(King et al. 2006)
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« How do you measure R

— By component (roots, wood, foliage)
* Assume R, = 25% of biomass
— Need to estimate new biomass added (NPP by component )
* R, .t With global correlations with N and/or temperature

* R, . DY establishing site-specific correlations with N and/or
temperature
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« How do you measure R
— Models based on general principles
— Eddy flux towers and isotopes

Flux partitioning
(Percentage of ecosystem respiration)

‘ Ecosystem keeling plot
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Aboveground respiration "~~~
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