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Terrestrial Nutrient Cycling 

• Objectives 
– Inputs, internal transfers, and outputs (losses) of 

nutrients from ecosystems (= Nutrient cycling) 
• N and P 

– Differences among major elements in biogeochemical 
cycling 
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Terrestrial Nutrient Cycling 

• All organisms need a suite of nutrients to carry 
out metabolic processes and produce biomass 
– Macronutrients vs. micronutrients 

• What is typically the most limiting nutrient in 
terrestrial ecosystems 
– N, right? 

• What is typically the most limiting nutrient in 
freshwater ecosystems 
– P, right? 
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Terrestrial Nutrient Cycling 

• Elser et al. (2007) compiled data from field 
studies that manipulated N and/or P supply in 
terrestrial (173), freshwater (653), and marine 
(243) ecosystems 
– Net primary production (NPP) 

• Relative increase in NPP with nutrient enrichment 

• Meta-analysis to test dominant paradigms 
about nutrient limitations to productivity of 
terrestrial and aquatic ecosystems 
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Terrestrial Nutrient Cycling 

• Across diverse ecosystem 
types: 
– N & P limitations are equally 

important in both systems 
– Combined N & P enrichment 

produces strong synergistic 
effects → co-limitation 

– Magnitude of the response 
to N and P enrichment is 
~similar between terrestrial 
and freshwater systems Elser et al. (2007) 
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Terrestrial Nutrient Cycling 

• Important differences 
across ecosystem 
types 

• Resource co-limitation 
evident in most 
ecosystem types 

Elser et al. (2007) 
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Terrestrial Nutrient Cycling 

• Harpole et al. (2011) compiled data from 641 
plant communities and found that: 
– >½  studies showed synergistic responses to N & 

P additions 
– Support for strict co-limitation in 28% of studies 
– Interactions between N & P regulate primary 

producers in most ecosystems 
– “Our concept of resource limitation has shifted 

over the past two decades from an earlier 
paradigm of single-resource limitation towards 
concepts of co-limitation by multiple resources…” 
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Terrestrial Nutrient Cycling 

• Human imprint on nutrient cycling: 
– Substantial alteration of all nutrient cycles 

• >100% increase in N cycling 
• >400% increase in P cycling 

– Leads to more “open” (or “leaky”) cycles of 
nutrients 

– What are the impacts of increased nutrient cycling 
(and availability) on ecosystem processes? 

• Belowground resource supply largely controls rates of 
ecosystem C and H2O cycling → Increased nutrient supply 
will have large and important consequences for ecosystem 
structure and function 
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Terrestrial Nutrient Cycling 

• Human imprint on nutrient cycling: 

Schlesinger et al. (2000) 
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• Nutrient Inputs to Ecosystems: 
1.Lateral Transfer 
2.Rock weathering 

– P, K, Ca, other cations 
– N only in sedimentary rocks & in limited supplies 

3.Biological fixation of atmospheric N 
– Main input of N to undisturbed systems 

4.Deposition (rain, dust, gases) 
– Most important for N and S, but occurs for all nutrients 
– Natural or anthropogenic 

Terrestrial Nutrient Cycling 
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• Internal transfers 
– Mineralization 

• Organic to inorganic forms; catalyzed by microbial activity 

– Chemical reactions from one ionic form to another 
– Uptake by plants and microbes 
– Transfers of dead organic matter (e.g., litterfall) 
– Exchange of nutrients on surfaces within the soil 

matrix (e.g., CEC) 
– Movement down the soil profile with H2O (but not 

leached out of the system) 

Terrestrial Nutrient Cycling 
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• Plant nutrient demand is largely met by internal transfers 
– Most natural systems are “closed” systems with conservative 

nutrient cycles 

Terrestrial Nutrient Cycling 

Table 7.1. Major Sources of Nutrients that Are Absorbed by Plantsa.  
 
 Source of plant nutrient (% of total) 
Nutrient Deposition/fixation Weathering Recycling 
Temperate forest (Hubbard Brook)   
  Nitrogen 7 0 93 
  Phosphorus 1 < 10 > 89 
  Potassium 2 10 88 
  Calcium 4 31 65 
Tundra (Barrow)   
  Nitrogen 4 0 96 
  Phosphorus 4 < 1 96 
 
a Data from (Whittaker et al. 1979, Chapin et al. 1980b) 
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• Plant nutrient demand is largely met by internal 
transfers 

Terrestrial Nutrient Cycling 

Gruber & Galloway (2008) 
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• Losses (outputs) 
– Leaching 
– Gaseous loss (trace-gas emission) 
– Wind and water erosion 
– Disturbances (e.g., fires, harvest) 

Terrestrial Nutrient Cycling 
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Simplified N Cycle 
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• Nitrogen Fixation 
– Main input of N to terrestrial ecosystems under 

natural/pristine/unpolluted conditions 
– Conversion of atmospheric N2 to NH4

+ by 
nitrogenase enzyme 

– Requires abundant energy, P, and other cofactors 
– Inhibited by oxygen (anaerobic process) 

• Leghemoglobin in plant nodules scavenges O2 & 
produces anaerobic conditions 

– Minimal at low temperatures 

Terrestrial Nutrient Cycling 
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• Carried out exclusively by microbes 
1. Symbiotic N fixation (Rhizobium, Frankia) 

• ~5 - 20 g N m-2 yr-1 

2. Heterotrophic N fixation (rhizosphere, decaying 
wood, other carbon-rich environments) 

• ~0.1 - 0.5 g N m-2 yr-1 

3. Photoautotrophs (cyanobacteria; lichens; mosses) 
• ~2.5 g N m-2 yr-1 

– ***All this N becomes available to other organisms 
via production & decomposition of N-rich litter 

• Enters the internal transfer/recycling loop 

Terrestrial Nutrient Cycling 
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Rhizobium and Frankia nodules 
Legume/Rhizobium nodules Leghemoglobin (red) 

Alnus/Frankia nodules 

Schlerenchyma reduces O2 
diffusion into the nodule 
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• Paradox of N limitation and fixation: 
– N frequently limits terrestrial NPP 

• N2 is the most abundant component of the atmosphere, 
but it is not available to most organisms 

– Why? 

– Why doesn’t N fixation occur everywhere and in all 
species??? 

• Occurs most frequently in P-limited tropical ecosystems 
(Houlton et al. 2008) 

– Why don’t N fixers always have a competitive 
advantage (at least until N becomes non-
limiting)??? 

Terrestrial Nutrient Cycling 
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• Limitations to N fixation exist 
– Energy availability in closed-canopy ecosystems is low 

• N fixation cost is 2-4x higher (3-6 g C per 1 g N) than cost of 
absorbing NH4

+ or NO3
- from the soil solution 

• Restricted to high-light environments where C gain is high, 
competition for light is low, and inorganic N is not abundant 

– Nutrient limitation (e.g., P; or Mo, Fe, S) 
• Nitrogenase requires P and Fe, Mo & S cofactors to reduce N2  
• May be the ultimate control over N fixation in many systems 

– Grazing / Consumption 
• N fixers are often preferred forage for herbivores 

Terrestrial Nutrient Cycling 
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• Limitations to N fixation exist (Houlton et al. 2008) 
– Advantage to symbiotic N fixers in P-limited tropical 

savannas and lowland tropical 
• Ability of N fixers to invest nitrogen into P acquisition 

– Temperature constrains N fixation rates and N-fixing 
species from mature forests in the high latitudes 

Terrestrial Nutrient Cycling 
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• N fixation typically 
declines with stand age 
– Other forms of N 

become more available 
– N fixation cost becomes 

too high 
– P (or some micro- 

nutrient) becomes 
limiting 

– GPP decreases and/or C 
partitioning shifts from 
below- to aboveground? 

Terrestrial Nutrient Cycling 

Pearson & Vitousek (2001) 

Acacia koa 



22 

• Foliar N ~constant 
• Foliar and root P 

decreased with age 
– N fixation is P limited in 

this ecosystem 
• ??? 

Terrestrial Nutrient Cycling 

Pearson & Vitousek (2001) 

Acacia koa 

Foliage 

Roots 
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• N Deposition 
– ~0.2 - 0.5 g N m-2 yr-1 in undisturbed systems 
– Dissolved, particulate, and gaseous forms 

• Wet deposition, cloud-water deposition, dry deposition 

– Human activities are now the major source of N 
deposition (1 - 10 g N m-2 yr-1; 10-100x natural rates) 

• Burning of fossil fuels (NOx flux is 80% anthropogenic) 
• Fertilizer use & domestic husbandry 

– NH3 to atmosphere → NH4
+ deposition on land 

• Substantial capacity of ecosystems to store this N 
– Eventually, losses to atmosphere and groundwater ↑↑↑ 

Terrestrial Nutrient Cycling 



24 

Terrestrial Nutrient Cycling 

Bobbink et al. (2010) 

• N Deposition 
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Internal transfers of N 

OM decomposition 
is main source of N 

Exoenzyme activity 
produces DON 

Mineralization converts 
organic N to NH4

+ 

Immobilization of NH4
+ 

and NO3
- by microbial 

uptake and conversion 
to organic compounds 

Nitrification converts 
NH4

+ to NO3
- 

Denitrification 
reduces NO3

- or NO2
- 

to N2 where O2 is 
limited   

Leaching is 
main loss from 
many 
ecosystems   

Particulate organic 
matter 
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• DON Uptake by plants (amino acids; glycine) 
– Can be an important source of N to plants in at least some systems 

• O-B-H = 77% of Total N uptake 
– Recalcitrant litter, slow N cycling, and thick amino-rich organic horizon 

• SM-WA = 20% of Total N uptake 
– Labile litter and high rates of amino acid production and turnover (i.e., rapid 

mineralization and nitrification) 

Terrestrial Nutrient Cycling 

Gallet-Budyanek et al. (2010) 
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• DON Uptake by plants (amino acids; glycine) 
– “We conclude that while root uptake of amino acids in intact form has been 

shown, evidence demonstrating this as a major plant N acquisition pathway 
is still lacking.” (Jones et al. 2005) 

– “We conclude that free amino acids are an important component of the N 
economy in all stands studied; however, in these natural environments plant 
uptake of organic N relative to inorganic N is explained as much by 
mycorrhizal association as by the availability of N forms per se.” (McFarland 
et al. 2010) 

Terrestrial Nutrient Cycling 

McFarland et al. (2010) 

Ecto-mycorrhizal 
Arbuscular-mycorrhizal 
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Mineralization results from microbial 
break-down of SOM, releasing “excess” 
NH4

+ as microbes use C 
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• Immobilization of NH4
+ depends on C status of 

microbes 
• Many microbes are C-limited, so they use the 

C skeleton and excrete excess N as NH4
+ 

– Gross mineralization = the total amount of NH4
+ 

released by mineralization (i.e., ammonification) 
• Some microbes are N-limited, which results in 

immobilization (at least temporarily) 
– Critical C:N of litter is ~25 

• Net mineralization is “excess” NH4
+ (and NO3

-) 
– Net = gross mineralization - immobilization (- loss) 

Terrestrial Nutrient Cycling 
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• N mineralization rate 
– Depends on:  

• Availability of substrate (DON) 
• Availability of NH4

+ in soil solution 
• C:N ratios in microbes and substrates 
• Microbial activity and growth efficiency 

– NH4
+ can be adsorbed onto clays, volatilized as NH3 

and/or used in nitrification reactions 
• N “loss” pathways substantially reduce net N 

mineralization below gross N mineralization 
– Plants/mycorrhizae excluded from mineralization assays 

Terrestrial Nutrient Cycling 
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Nitrification: nitrifying bacteria convert 
NH4

+ to NO2
- and then NO3

- 
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• Nitrification is a 2-step process  
– NH4

+ → NO2
- (Nitrosolobus); then NO2

- → NO3
- 

(Nitrobacter) 
• Chemoautotrophs that gain energy from NH4

+ or NO2
- 

oxidation 

• NH4
+ availability is most important determinant of 

nitrification rate 
– Also need O2 (aerobic process) 

• Heterotrophic nitrification is generally less 
important and less well understood 

• % of NH4
+ that undergoes nitrification? 

– 0-4% in temperate forests; 100% in tropical forests 

Terrestrial Nutrient Cycling 
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• % of soil NH4
+ that undergoes nitrification? 

– <25% in temperate forests vs. 100% in tropical forests 

Terrestrial Nutrient Cycling 
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Denitrification occurs where low O2, high 
NO3

-, and sufficient organic C occur 
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• Denitrification: 
– Produces NO and N2O, and N2 in anaerobic conditions 

• NO and N2O, also produced during nitrification, are important 
greenhouse gases 

– NO3
- supply is main limitation 

• NO3
- is produced in aerobic conditions? 

– Mainly heterotrophic 
• Organic C supply is necessary 

– Use NO3
- as an electron acceptor to oxidize organic C for energy 

– Soils where O2 supply is spatially or temporally 
variable have highest denitrification rates 

Terrestrial Nutrient Cycling 
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• N loss (output) pathways: 
1. Gaseous losses 

– NH4
+ volatilization to NH3 (pH > 7) 

– Nitrification releases NO, N2O 
– Denitrification releases NO, N2O, N2 

2. Solution losses (NO3
-) / leaching 

– Important pollutant w/ disturbance; where N 
deposition → N saturation; ag fields; feedlots 

3. Erosion 
4. Disturbance (fire, harvesting, etc.) 

Terrestrial Nutrient Cycling 
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Processes involved in N cycling and gaseous emissions 
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• N gaseous “species” 
– NH3 reduces atmospheric acidity as it is converted 

to NH4
+, which can be deposited elsewhere 

– NO & NO2 (NOx) are highly reactive 
• Lead to formation of tropospheric O3 (smog) 
• Large contributors to acid rain and N deposition 

– N2O is relatively long-lived (150 yrs) and not 
chemically reactive in troposphere 

• Potent greenhouse gas (200x more effective than CO2) 
• Destroys stratospheric O3 

– N2 dominates atmosphere (78%) and has a MRT 
of 13,000,000 years 

Terrestrial Nutrient Cycling 



39 

• N loss (output) pathways: 
–N solution losses can be high 

with: 
• High N deposition 
• Disturbance 

–Primarily NO3
- is lost via 

leaching 
• Can lead to important loses of 

cations to maintain balanced 
charge in soil soution 

Terrestrial Nutrient Cycling 

Bormann & Likens (1979) 
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• Phosphorous cycling: 
– Weathering of primary minerals (apatite) is main input 

of new P into ecosystems 
• Ca5(PO4)3 + H2CO3 → 5Ca2+ + 3HPO4

2- + 4HCO3
- + H2O 

• Phosphate (PO4
3-) is primary form of available P in soils 

– Phosphate does not undergo redox reactions  
– No important gas phases; only dust in atmosphere 
– Internal transfers predominate (esp. in old sites) 

• Organic P is bound to C via ester linkages (C-O-P) 
– P availability not as closely tied to decomposition as N 

• Roots and mycorrhizae produce phosphatase enzymes that 
cleave these linkages without breaking down C skeleton 

Terrestrial Nutrient Cycling 
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Terrestrial Nutrient Cycling 

• Phosphorous cycling: 
– Inorganic P from weathering & decomposition can be: 

1) Taken up by plants and microbes 
– Tight cycling of P between organic matter and plant roots 
– Microbes account for 20-30% of organic P in soils 

» C:P controls balance between mineralization & immobilization 
2) Adsorbed onto soil minerals (unavailable) 
3) Precipitated out of solution (unavailable) 

– Due to 2 & 3, ~90% of P loss occurs via surface runoff and erosion 

– P often limits ecosystem development over long time 
periods as primary minerals weather 

• Deposition becomes important source of P as ecosystems age 
(i.e., as substrate weathers) 
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Terrestrial Nutrient Cycling 
• Much of the P cycle in soils is geochemical 

– At low pH, ‘fixation’ by Fe, Al, Mn and Mg oxides dominates 
– At high pH where CaCO3 is present, P is ‘fixed’ as Ca3(PO4)2 

–  Occlusion (‘fixation’) of P makes it unavailable 
• Over ecosystem development, P typically becomes the primary limiting 

nutrient (over long time scales) 
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Terrestrial Nutrient Cycling 

Walker and Syers (1976) 
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Contrasting Biogeochemical Cycles 
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Terrestrial Nutrient Cycling 

• Interactions among Element Cycles 
– Supply rate of the most limiting nutrient largely 

determines rate of cycling of all essential nutrients 
• Function of absorption by vegetation 

– Dynamic balance between rate of supply in soil and nutrient 
demands of vegetation 

• Vegetation has a limited range of element ratios (stoichiometry) 
• Most strongly limiting element has greatest impact on NPP 

– Absorption of other elements is adjusted to maintain relatively 
constant stoichiometry 

– But plants can absorb more nutrients than they need (to a certain 
point) and “store” them for later 

• Many/most ecosystems characterized by nutrient co-limitation 
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