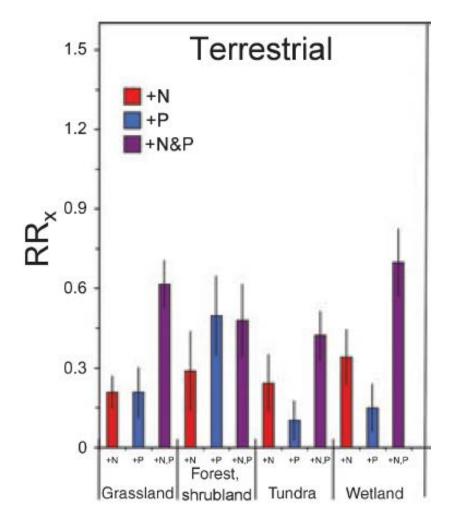

- Objectives
 - Inputs, internal transfers, and outputs (losses) of nutrients from ecosystems (= Nutrient cycling)
 - N and P
 - Differences among major elements in biogeochemical cycling


- All organisms need a suite of nutrients to carry out metabolic processes and produce biomass
 Macronutrients vs. micronutrients
- What is typically the most limiting nutrient in terrestrial ecosystems
 - N, right?
- What is typically the most limiting nutrient in freshwater ecosystems
 - P, right?

- Elser et al. (2007) compiled data from field studies that manipulated N and/or P supply in terrestrial (173), freshwater (653), and marine (243) ecosystems
 - Net primary production (NPP)
 - Relative increase in NPP with nutrient enrichment
- Meta-analysis to test dominant paradigms about nutrient limitations to productivity of terrestrial and aquatic ecosystems

- Across diverse ecosystem types:
 - N & P limitations are equally important in both systems
 - Combined N & P enrichment produces strong synergistic effects \rightarrow co-limitation
 - Magnitude of the response to N and P enrichment is ~similar between terrestrial and freshwater systems

- Important differences across ecosystem types
- Resource co-limitation evident in most ecosystem types

Elser et al. (2007)

- Harpole et al. (2011) compiled data from 641 plant communities and found that:
 - >½ studies showed synergistic responses to N & P additions
 - Support for strict co-limitation in 28% of studies
 - Interactions between N & P regulate primary producers in most ecosystems
 - "Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources..."

- Human imprint on nutrient cycling:
 - Substantial alteration of all nutrient cycles
 - >100% increase in N cycling
 - >400% increase in P cycling
 - Leads to more "open" (or "leaky") cycles of nutrients
 - What are the impacts of increased nutrient cycling (and availability) on ecosystem processes?
 - Belowground resource supply largely controls rates of ecosystem C and H₂O cycling → Increased nutrient supply will have large and important consequences for ecosystem structure and function

• Human imprint on nutrient cycling:

Table 3. Budgets for nitrogen on the global land surface

	Pre-industrial	Human derived	Total
Inputs			
Biological nitrogen fixation	120	20†	140
Lightning	5	0	5
Industrial N-fixation	0	125‡	125
Fossil fuel combustion	0	25	25
Totals	125	170	295
Fates			
Biospheric increment	0	9	9
Riverflow	27	35	62
Groundwater	0	15	15
Denitrification	92*	17	109
Atmospheric transport to the ocean	6	48	54
Totals	125	124	249

Schlesinger et al. (2000)

All values are TgN/yr. Unless otherwise indicated, preindustrial values and human-derived inputs are for the mid-1990s from Galloway *et al.* (43) and Duce *et al.* (22). Fates of anthropogenic nitrogen are derived in this paper. *To balance. *Net of human activities. *Ref. 89 for 2007.

- Nutrient Inputs to Ecosystems:
- 1. Lateral Transfer
- 2. Rock weathering
 - P, K, Ca, other cations
 - N only in sedimentary rocks & in limited supplies
- 3. Biological fixation of atmospheric N
 - Main input of N to undisturbed systems
- 4. Deposition (rain, dust, gases)
 - Most important for N and S, but occurs for all nutrients
 - Natural or anthropogenic

- Internal transfers
 - Mineralization
 - Organic to inorganic forms; catalyzed by microbial activity
 - Chemical reactions from one ionic form to another
 - Uptake by plants and microbes
 - Transfers of dead organic matter (e.g., litterfall)
 - Exchange of nutrients on surfaces within the soil matrix (e.g., CEC)
 - Movement down the soil profile with H₂O (but not leached out of the system)

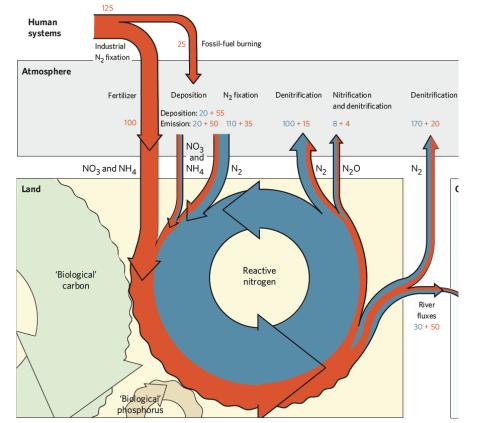

- Plant nutrient demand is largely met by internal transfers
 - Most natural systems are "closed" systems with conservative nutrient cycles

Table 7.1. Major Sources of Nutrients that Are Absorbed by Plants^a.

Source of plant nutrient (% of total)				
Nutrient	Deposition/fixation	Weathering	Recycling	
Temperate forest (Hu	bbard Brook)			
Nitrogen	7	0	93	
Phosphorus	1	< 10	> 89	
Potassium	2	10	88	
Calcium	4	31	65	
Tundra (Barrow)				
Nitrogen	4	0	96	
Phosphorus	4	< 1	96	

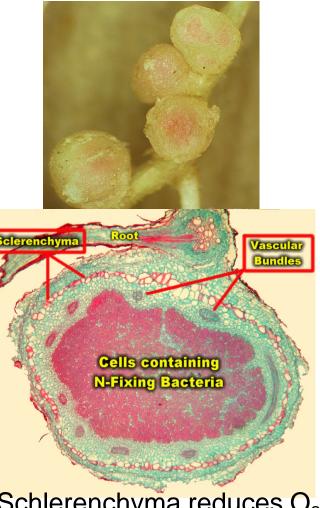
^a Data from (Whittaker et al. 1979, Chapin et al. 1980b)

 Plant nutrient demand is largely met by internal transfers

Gruber & Galloway (2008)

- Losses (outputs)
 - Leaching
 - Gaseous loss (trace-gas emission)
 - Wind and water erosion
 - Disturbances (e.g., fires, harvest)

Simplified N Cycle

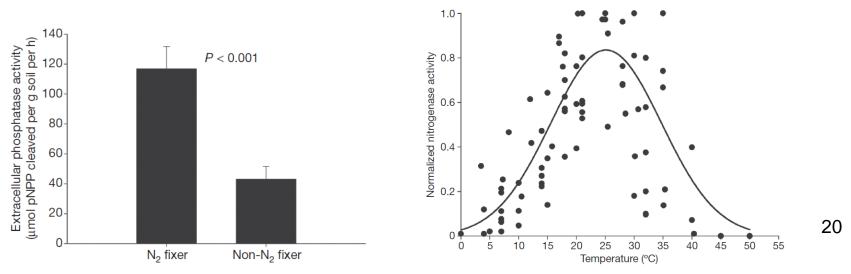

- Nitrogen Fixation
 - Main input of N to terrestrial ecosystems under natural/pristine/unpolluted conditions
 - Conversion of atmospheric N₂ to NH₄⁺ by nitrogenase enzyme
 - Requires abundant energy, P, and other cofactors
 - Inhibited by oxygen (anaerobic process)
 - Leghemoglobin in plant nodules scavenges O₂ & produces anaerobic conditions
 - Minimal at low temperatures

- Carried out exclusively by microbes
 - 1. Symbiotic N fixation (Rhizobium, Frankia)
 - ~5 20 g N m⁻² yr⁻¹
 - 2. Heterotrophic N fixation (rhizosphere, decaying wood, other carbon-rich environments)
 - ~0.1 0.5 g N m⁻² yr⁻¹
 - 3. Photoautotrophs (cyanobacteria; lichens; mosses)
 - ~2.5 g N m⁻² yr⁻¹
 - ***All this N becomes available to other organisms via production & decomposition of N-rich litter
 - Enters the internal transfer/recycling loop

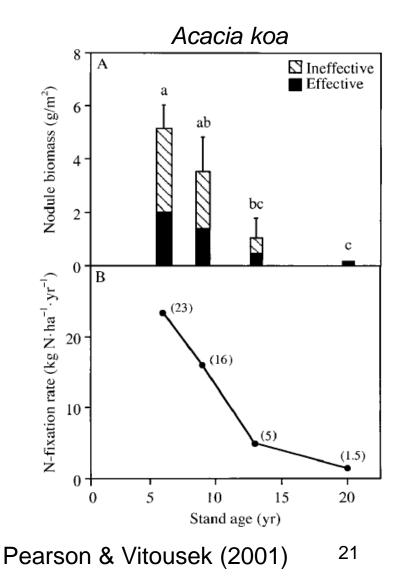
Rhizobium and Frankia nodules

Legume/*Rhizobium* nodules Leghemoglobin (red)

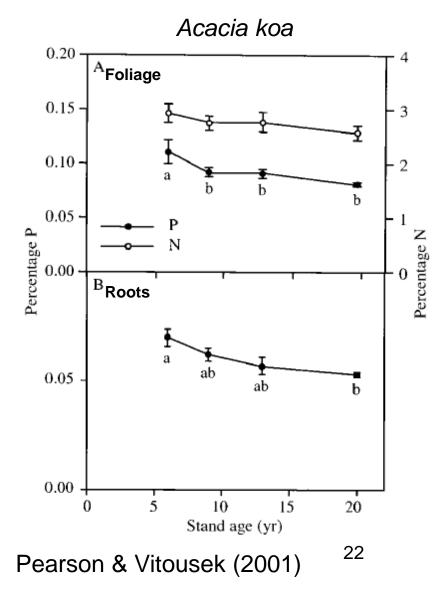
Alnus/Frankia nodules



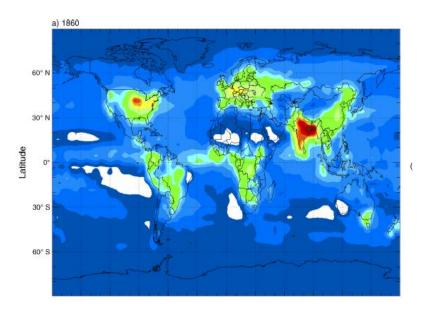
Schlerenchyma reduces O₂ diffusion into the nodule

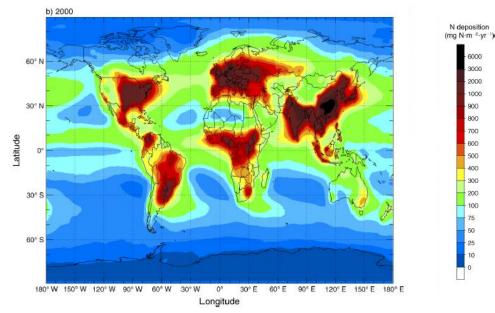

- Paradox of N limitation and fixation:
 - N frequently limits terrestrial NPP
 - N₂ is the most abundant component of the atmosphere, but it is not available to most organisms
 - Why?
 - Why doesn't N fixation occur everywhere and in all species???
 - Occurs most frequently in P-limited tropical ecosystems (Houlton et al. 2008)
 - Why don't N fixers always have a competitive advantage (at least until N becomes nonlimiting)???

- Limitations to N fixation exist
 - Energy availability in closed-canopy ecosystems is low
 - N fixation cost is 2-4x higher (3-6 g C per 1 g N) than cost of absorbing NH₄⁺ or NO₃⁻ from the soil solution
 - Restricted to high-light environments where C gain is high, competition for light is low, and inorganic N is not abundant
 - Nutrient limitation (e.g., P; or Mo, Fe, S)
 - Nitrogenase requires P and Fe, Mo & S cofactors to reduce N₂
 - May be the ultimate control over N fixation in many systems
 - Grazing / Consumption
 - N fixers are often preferred forage for herbivores

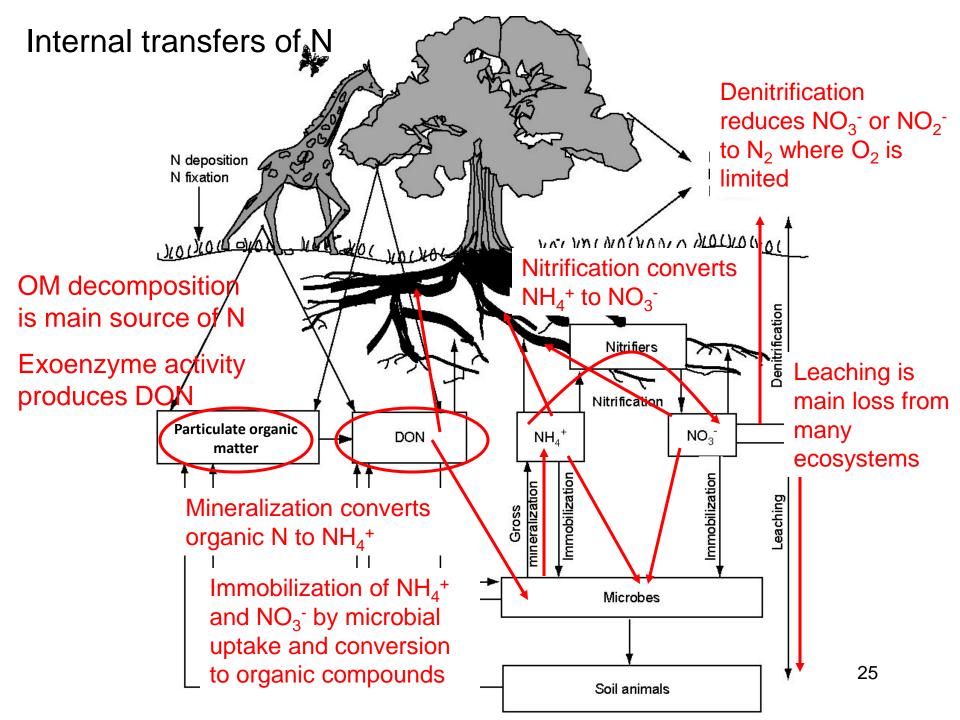

- Limitations to N fixation exist (Houlton et al. 2008)
 - Advantage to symbiotic N fixers in P-limited tropical savannas and lowland tropical
 - Ability of N fixers to invest nitrogen into P acquisition
 - Temperature constrains N fixation rates and N-fixing species from mature forests in the high latitudes

- N fixation typically declines with stand age
 - Other forms of N become more available
 - N fixation cost becomes too high
 - P (or some micronutrient) becomes limiting
 - GPP decreases and/or C partitioning shifts from below- to aboveground?

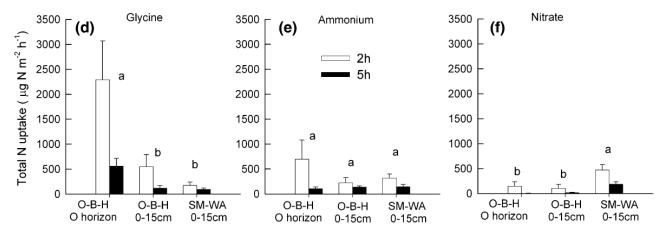

- Foliar N ~constant
- Foliar and root P decreased with age
 - N fixation is P limited in this ecosystem
 - ???



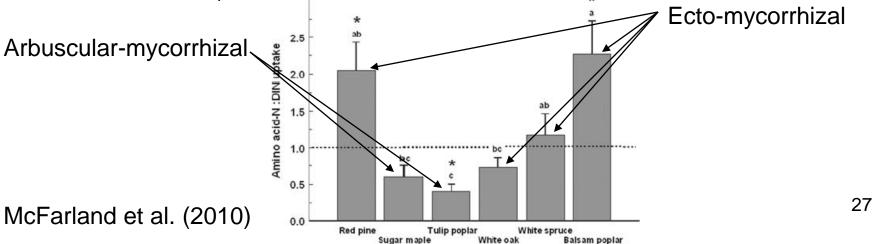
N Deposition

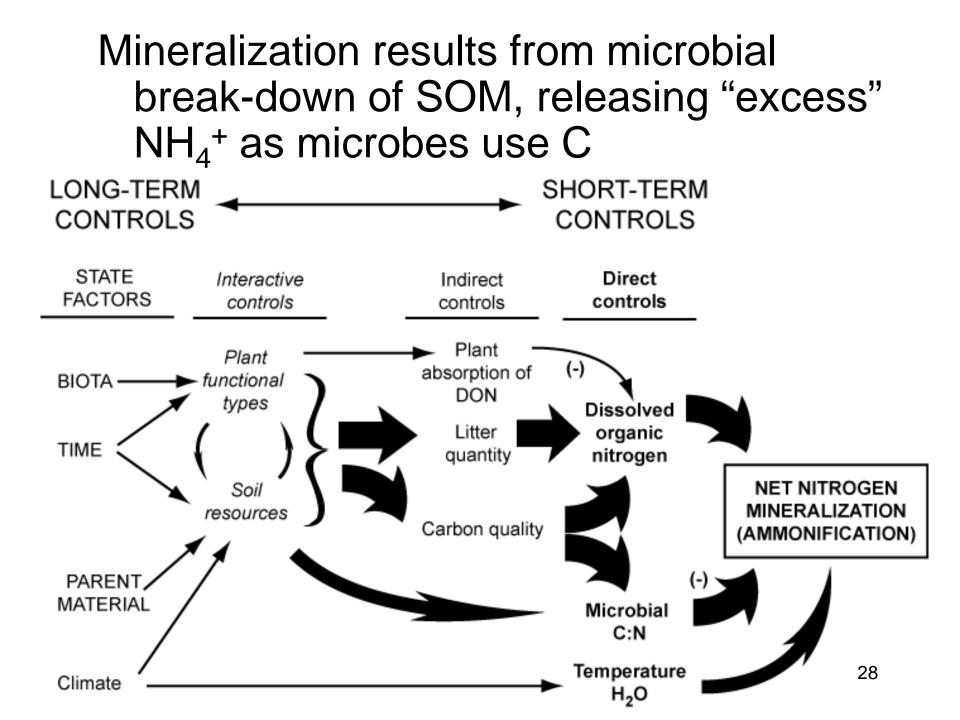

- ~0.2 0.5 g N m $^{-2}$ yr $^{-1}$ in undisturbed systems
- Dissolved, particulate, and gaseous forms
 - Wet deposition, cloud-water deposition, dry deposition
- Human activities are now the major source of N deposition (1 - 10 g N m⁻² yr⁻¹; 10-100x natural rates)
 - Burning of fossil fuels (NO_x flux is 80% anthropogenic)
 - Fertilizer use & domestic husbandry
 - $\rm NH_3$ to atmosphere $\rightarrow \rm NH_4^+$ deposition on land
 - Substantial capacity of ecosystems to store this N
 - Eventually, losses to atmosphere and groundwater $\uparrow\uparrow\uparrow$

• N Deposition



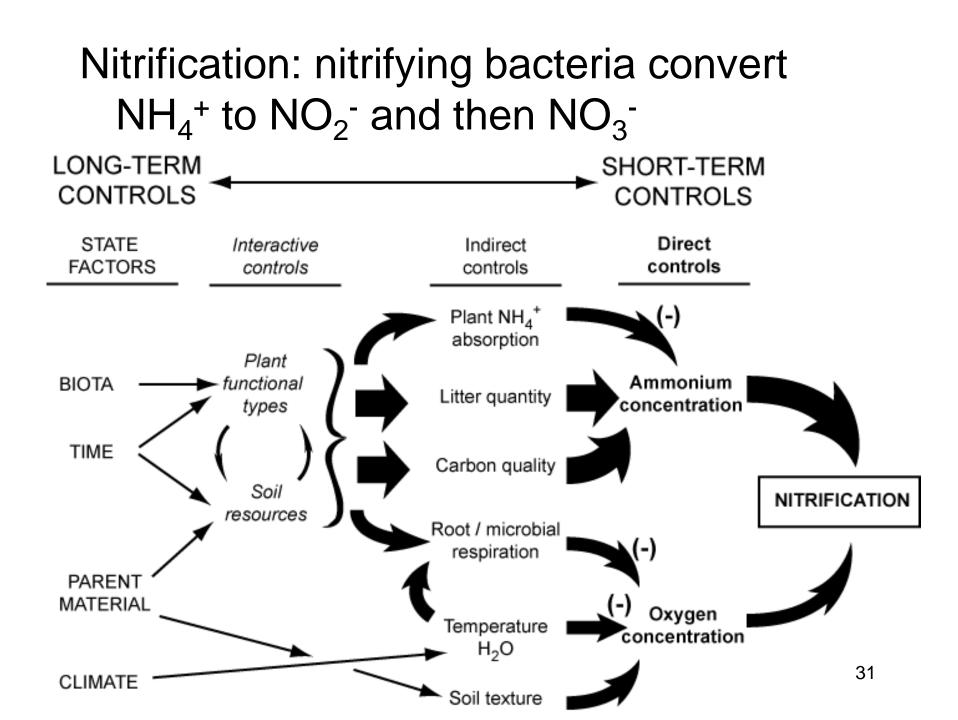
Bobbink et al. (2010)




- DON Uptake by plants (amino acids; glycine)
 - Can be an important source of N to plants in at least some systems
 - O-B-H = 77% of Total N uptake
 - Recalcitrant litter, slow N cycling, and thick amino-rich organic horizon
 - SM-WA = 20% of Total N uptake
 - Labile litter and high rates of amino acid production and turnover (i.e., rapid mineralization and nitrification)

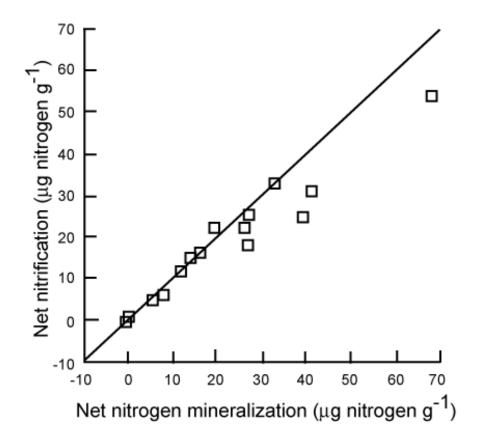
Gallet-Budyanek et al. (2010)

- DON Uptake by plants (amino acids; glycine)
 - "We conclude that while root uptake of amino acids in intact form has been shown, evidence demonstrating this as a major plant N acquisition pathway is still lacking." (Jones et al. 2005)
 - "We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se." (McFarland et al. 2010)

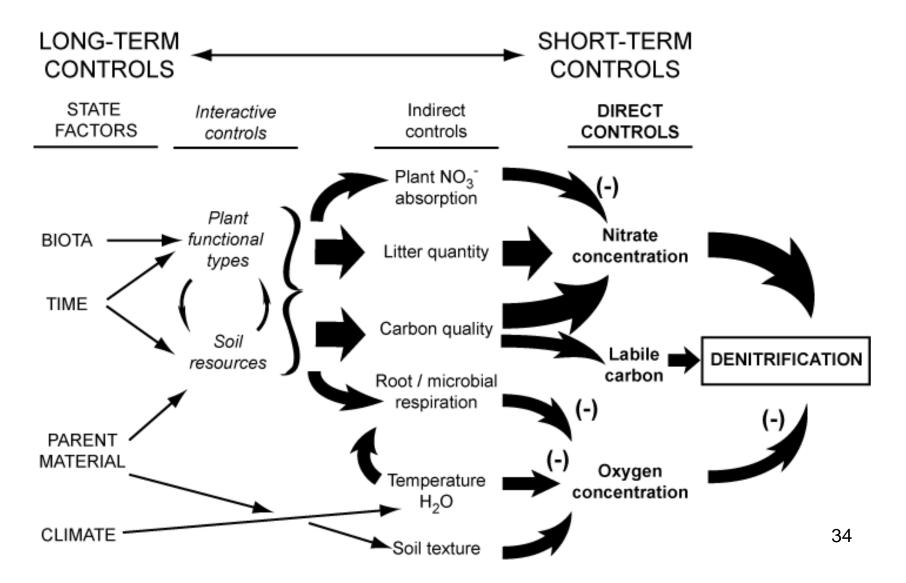


- Immobilization of NH₄⁺ depends on C status of microbes
- Many microbes are C-limited, so they use the C skeleton and excrete excess N as NH₄⁺
 - Gross mineralization = the total amount of NH₄⁺
 released by mineralization (i.e., ammonification)
- Some microbes are N-limited, which results in immobilization (at least temporarily)

Critical C:N of litter is ~25


Net mineralization is "excess" NH₄+ (and NO₃-)
 – Net = gross mineralization - immobilization (- loss)

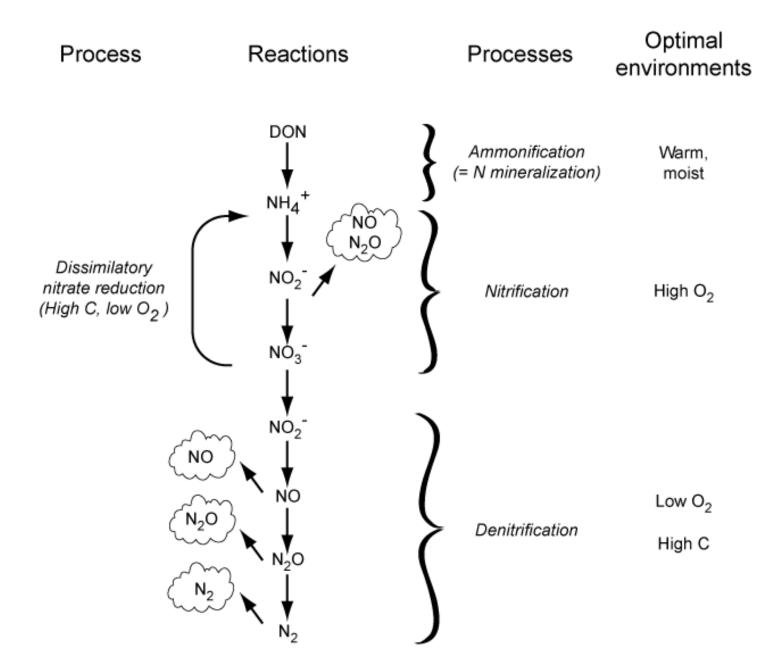
- N mineralization rate
 - Depends on:
 - Availability of substrate (DON)
 - Availability of NH₄⁺ in soil solution
 - C:N ratios in microbes and substrates
 - Microbial activity and growth efficiency
 - $\rm NH_4^+$ can be adsorbed onto clays, volatilized as $\rm NH_3$ and/or used in nitrification reactions
 - N "loss" pathways substantially reduce net N mineralization below gross N mineralization
 - Plants/mycorrhizae excluded from mineralization assays



- Nitrification is a 2-step process
 - $NH_4^+ \rightarrow NO_2^-$ (*Nitrosolobus*); then $NO_2^- \rightarrow NO_3^-$ (*Nitrobacter*)
 - Chemoautotrophs that gain energy from NH₄⁺ or NO₂⁻ oxidation
- NH₄⁺ availability is most important determinant of nitrification rate
 - Also need O₂ (aerobic process)
- Heterotrophic nitrification is generally less
 important and less well understood
- % of NH₄⁺ that undergoes nitrification?
 0-4% in temperate forests; 100% in tropical forests

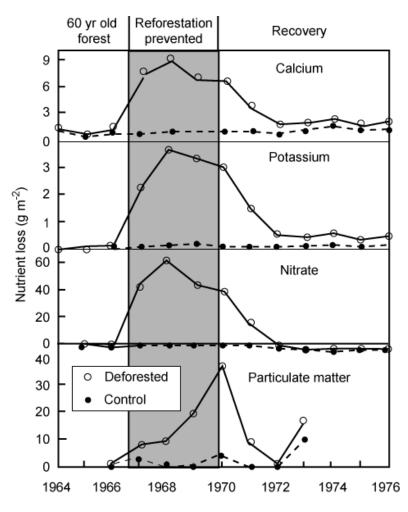
- % of soil NH₄⁺ that undergoes nitrification?
 - <25% in temperate forests vs. 100% in tropical forests

Denitrification occurs where low O_2 , high NO_3^- , and sufficient organic C occur



• Denitrification:

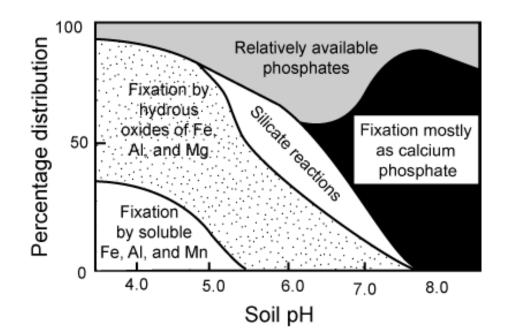
- Produces NO and N_2O , and N_2 in anaerobic conditions
 - NO and N₂O, also produced during nitrification, are important greenhouse gases
- NO_3^- supply is main limitation
 - NO₃⁻ is produced in aerobic conditions?
- Mainly heterotrophic
 - Organic C supply is necessary
 - Use NO_3^- as an electron acceptor to oxidize organic C for energy
- Soils where O₂ supply is spatially or temporally variable have highest denitrification rates

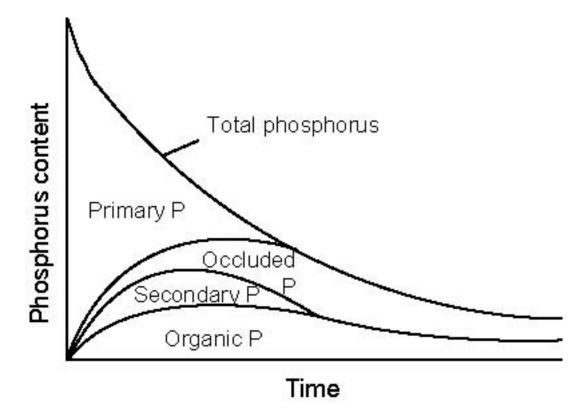

- N loss (output) pathways:
- 1. Gaseous losses
 - NH_4^+ volatilization to NH_3 (pH > 7)
 - Nitrification releases NO, N₂O
 - Denitrification releases NO, N₂O, N₂
- 2. Solution losses (NO_3^{-}) / leaching
 - Important pollutant w/ disturbance; where N deposition \rightarrow N saturation; ag fields; feedlots
- 3. Erosion
- 4. Disturbance (fire, harvesting, etc.)

Processes involved in N cycling and gaseous emissions

- N gaseous "species"
 - NH₃ reduces atmospheric acidity as it is converted to NH₄⁺, which can be deposited elsewhere
 - NO & NO₂ (NO_x) are highly reactive
 - Lead to formation of tropospheric O₃ (smog)
 - Large contributors to acid rain and N deposition
 - N₂O is relatively long-lived (150 yrs) and not chemically reactive in troposphere
 - Potent greenhouse gas (200x more effective than CO₂)
 - Destroys stratospheric O₃
 - N₂ dominates atmosphere (78%) and has a MRT of 13,000,000 years

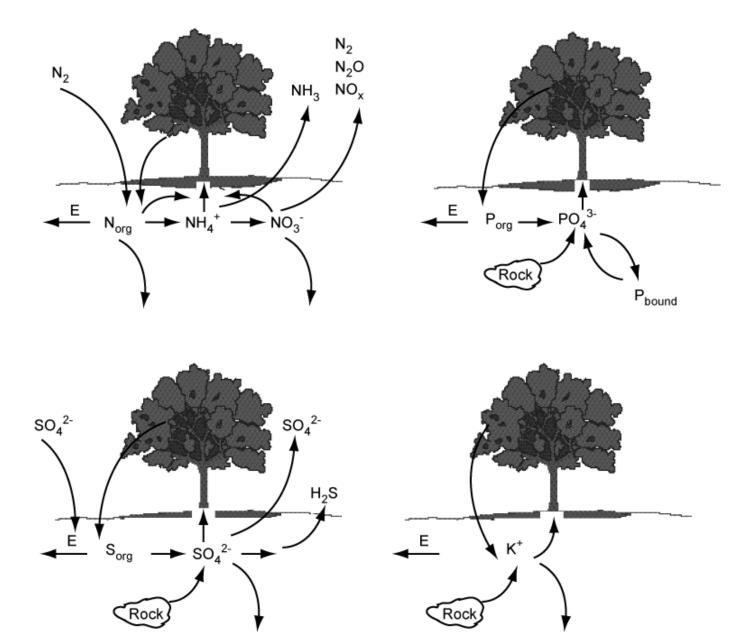
- N loss (output) pathways:
 - -N solution losses can be high with:
 - High N deposition
 - Disturbance
 - –Primarily NO₃⁻ is lost via leaching
 - Can lead to important loses of cations to maintain balanced charge in soil soution




Bormann & Likens (1979) ³⁹

- Phosphorous cycling:
 - Weathering of primary minerals (apatite) is main input of new P into ecosystems
 - $Ca_5(PO_4)_3 + H_2CO_3 \rightarrow 5Ca^{2+} + 3HPO_4^{2-} + 4HCO_3^{-} + H_2O_3^{-}$
 - Phosphate (PO_4^{3-}) is primary form of available P in soils
 - Phosphate does not undergo redox reactions
 - No important gas phases; only dust in atmosphere
 - Internal transfers predominate (esp. in old sites)
 - Organic P is bound to C via ester linkages (C-O-P)
 - P availability not as closely tied to decomposition as N
 - Roots and mycorrhizae produce phosphatase enzymes that cleave these linkages without breaking down C skeleton

- Phosphorous cycling:
 - Inorganic P from weathering & decomposition can be:
 - 1) Taken up by plants and microbes
 - Tight cycling of P between organic matter and plant roots
 - Microbes account for 20-30% of organic P in soils
 - » C:P controls balance between mineralization & immobilization
 - 2) Adsorbed onto soil minerals (unavailable)
 - 3) Precipitated out of solution (unavailable)
 - Due to 2 & 3, ~90% of P loss occurs via surface runoff and erosion
 - P often limits ecosystem development over long time periods as primary minerals weather
 - Deposition becomes important source of P as ecosystems age (i.e., as substrate weathers)


- Much of the P cycle in soils is geochemical
 - At low pH, 'fixation' by Fe, AI, Mn and Mg oxides dominates
 - At high pH where $CaCO_3$ is present, P is 'fixed' as $Ca_3(PO_4)_2$
 - Occlusion ('fixation') of P makes it unavailable
 - Over ecosystem development, P typically becomes the primary limiting nutrient (over long time scales)

Walker and Syers (1976)

Contrasting Biogeochemical Cycles

44

- Interactions among Element Cycles
 - Supply rate of the most limiting nutrient largely determines rate of cycling of all essential nutrients
 - Function of absorption by vegetation
 - Dynamic balance between rate of supply in soil and nutrient demands of vegetation
 - Vegetation has a limited range of element ratios (stoichiometry)
 - Most strongly limiting element has greatest impact on NPP
 - Absorption of other elements is adjusted to maintain relatively constant stoichiometry
 - But plants can absorb more nutrients than they need (to a certain point) and "store" them for later
 - Many/most ecosystems characterized by nutrient co-limitation