Terrestrial Nutrient Cycling

* Objectives
— Inputs, internal transfers, and outputs (losses) of
nutrients from ecosystems (= Nutrient cycling)
 Nand P

— Differences among major elements in biogeochemical
cycling



Terrestrial Nutrient Cycling

« All organisms need a suite of nutrients to carry
out metabolic processes and produce biomass

— Macronutrients vs. micronutrients

 What is typically the most limiting nutrient in
terrestrial ecosystems
— N, right?

 What is typically the most limiting nutrient in
freshwater ecosystems
— P, right?
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* Elser et al. (2007) compiled data from field
studies that manipulated N and/or P supply In
terrestrial (173), freshwater (653), and marine
(243) ecosystems

— Net primary production (NPP)
» Relative increase in NPP with nutrient enrichment
 Meta-analysis to test dominant paradigms
about nutrient limitations to productivity of
terrestrial and aquatic ecosystems
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Terrestrial Nutrient Cycling

e Important differences
across ecosystem

types
e Resource co-limitation

evident in most
ecosystem types
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Terrestrial Nutrient Cycling

 Harpole et al. (2011) compiled data from 641
plant communities and found that:

— >Y% studies showed synergistic responses to N &
P additions

— Support for strict co-limitation in 28% of studies

— Interactions between N & P regulate primary
producers in most ecosystems

— “Our concept of resource limitation has shifted
over the past two decades from an earlier
paradigm of single-resource limitation towards

concepts of co-limitation by multiple resources...”
6



Terrestrial Nutrient Cycling

 Human imprint on nutrient cycling:

— Substantial alteration of all nutrient cycles
* >100% increase in N cycling
* >400% increase in P cycling

— Leads to more “open” (or “leaky”) cycles of
nutrients

— What are the impacts of increased nutrient cycling
(and availability) on ecosystem processes?

* Belowground resource supply largely controls rates of
ecosystem C and H,O cycling — Increased nutrient supply
will have large and important consequences for ecosystem

structure and function
7
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 Human imprint on nutrient cycling:

Table 3. Budgets for nitrogen on the global land surface

Human
Pre-industrial derived Total
Inputs
Biological nitrogen fixation 120 201 140
Lightning 5 0 5
Industrial N-fixation 0 125% 125
Fossil fuel combustion 0 25 25
Totals 125 170 295
Fates
Biospheric increment 0 9 9
Riverflow 27 35 62
Groundwater 0 15 15
Denitrification 92* 17 109
Atmospheric transport to the 6 48 54
ocean
Totals 125 124 249

All values are TgN/yr. Unless otherwise indicated, preindustrial values and
human-derived inputs are for the mid-1990s from Galloway et al. (43) and

Duce et al. (22). Fates of anthropogenic nitrogen are derived in this paper.

*To balance.
Net of human activities.
*Ref. 89 for 2007.

Schlesinger et al. (2000)
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« Nutrient Inputs to Ecosystems:
1. Lateral Transfer

2. Rock weathering
— P, K, Ca, other cations
— N only in sedimentary rocks & in limited supplies
3. Biological fixation of atmospheric N
— Main input of N to undisturbed systems
4. Deposition (rain, dust, gases)
— Most important for N and S, but occurs for all nutrients

— Natural or anthropogenic .
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e Internal transfers

— Mineralization
* Organic to inorganic forms; catalyzed by microbial activity

— Chemical reactions from one ionic form to another
— Uptake by plants and microbes
— Transfers of dead organic matter (e.g., litterfall)

— Exchange of nutrients on surfaces within the soil
matrix (e.g., CEC)

— Movement down the soil profile with H,O (but not
leached out of the system)

10
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« Plant nutrient demand is largely met by internal transfers

— Most natural systems are “closed” systems with conservative
nutrient cycles

Table 7.1. Major Sources of Nutrients that Are Absorbed by Plants®.

Source of plant nutrient (% of total)
Nutrient Deposition/fixation | Weathering Recycling
Temperate forest (Hubbard Brook)
Nitrogen / 0 93
Phosphorus 1 <10 > 89
Potassium 2 10 88
Calcium 4 31 65
Tundra (Barrow)
Nitrogen 4 0 96
Phosphorus 4 <1 96

® Data from (Whittaker et al. 1979, Chapin et al. 1980b)
11
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« Plant nutrient demand is largely met by internal
transfers

Gruber & Galloway (2008)
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e Losses (outputs)
— Leaching
— Gaseous loss (trace-gas emission)
— Wind and water erosion
— Disturbances (e.g., fires, harvest)
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Simplified N Cycle
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* Nitrogen Fixation

— Main input of N to terrestrial ecosystems under
natural/pristine/unpolluted conditions

— Conversion of atmospheric N, to NH,* by
nitrogenase enzyme

— Requires abundant energy, P, and other cofactors

— Inhibited by oxygen (anaerobic process)

* Leghemoglobin in plant nodules scavenges O, &
produces anaerobic conditions

— Minimal at low temperatures

15
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e Carried out exclusively by microbes

1. Symbiotic N fixation (Rhizobium, Frankia)
e ~5-20gNm2yrt

2. Heterotrophic N fixation (rhizosphere, decaying
wood, other carbon-rich environments)
e ~0.1-05gNm?2yrl

3. Photoautotrophs (cyanobacteria; lichens; mosses)
e ~25gNmZ2yrt
***All this N becomes available to other organisms

via production & decomposition of N-rich litter
 Enters the internal transfer/recycling loop

16



Rhizobium and Frankia nodules
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e Paradox of N limitation and fixation:

— N frequently limits terrestrial NPP

* N, is the most abundant component of the atmosphere,
but it is not available to most organisms

— Why?
— Why doesn’t N fixation occur everywhere and in all
species???
» Occurs most frequently in P-limited tropical ecosystems
(Houlton et al. 2008)
— Why don’t N fixers always have a competitive

advantage (at least until N becomes non-
limiting)???

18
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 Limitations to N fixation exist

— Energy availability in closed-canopy ecosystems is low

* N fixation cost is 2-4x higher (3-6 g C per 1 g N) than cost of
absorbing NH,* or NO5 from the soil solution

» Restricted to high-light environments where C gain is high,
competition for light is low, and inorganic N is not abundant

— Nutrient limitation (e.g., P; or Mo, Fe, S)
* Nitrogenase requires P and Fe, Mo & S cofactors to reduce N,
* May be the ultimate control over N fixation in many systems

— Grazing / Consumption

» N fixers are often preferred forage for herbivores
19
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e Limitations to N fixation exist (Houlton et al. 2008)

— Advantage to symbiotic N fixers in P-limited tropical
savannas and lowland tropical
 Ability of N fixers to invest nitrogen into P acquisition

— Temperature constrains N fixation rates and N-fixing
species from mature forests in the high latitudes
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Acacia koa

« N fixation typically
declines with stand age

— Other forms of N
become more available

— N fixation cost becomes
too high

— P (or some micro-
nutrient) becomes
limiting

— GPP decreases and/or C
partitioning shifts from
below- to aboveground?
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e Foliar N ~constant

* Foliar and root P
decreased with age

— N fixation i1s P limited In

this ecosystem
« 277
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N Deposition
— ~0.2 - 0.5 g N m=2yrtin undisturbed systems

— Dissolved, particulate, and gaseous forms
» Wet deposition, cloud-water deposition, dry deposition

— Human activities are now the major source of N
deposition (1 - 10 g N m~ yrt; 10-100x natural rates)
« Burning of fossil fuels (NO, flux is 80% anthropogenic)

» Fertilizer use & domestic husbandry
— NH; to atmosphere — NH,* deposition on land

» Substantial capacity of ecosystems to store this N
— Eventually, losses to atmosphere and groundwater 111

23
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N Deposition
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Internal transfers Ofgy

Denitrification
reduces NO5 or NO,
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DON Uptake by plants (amino acids; glycine)

— Can be an important source of N to plants in at least some systems

 O-B-H =77% of Total N uptake
— Recalcitrant litter, slow N cycling, and thick amino-rich organic horizon

« SM-WA = 20% of Total N uptake

— Labile litter and high rates of amino acid production and turnover (i.e., rapid
mineralization and nitrification)
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« DON Uptake by plants (amino acids; glycine)

— “We conclude that while root uptake of amino acids in intact form has been
shown, evidence demonstrating this as a major plant N acquisition pathway
is still lacking.” (Jones et al. 2005)

— “We conclude that free amino acids are an important component of the N
economy in all stands studied; however, in these natural environments plant
uptake of organic N relative to inorganic N is explained as much by

mycorrhizal association as by the availability of N forms per se.” (McFarland
et al. 2010)
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Mineralization results from microbial
break-down of SOM, releasing “excess”
NH," as microbes use C
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Immobilization of NH,* depends on C status of
microbes

Many microbes are C-limited, so they use the
C skeleton and excrete excess N as NH,*

— Gross mineralization = the total amount of NH,*
released by mineralization (i.e., ammonification)

Some microbes are N-limited, which results In
Immobilization (at least temporarily)

— Critical C:N of litter is ~25

Net mineralization is “excess” NH,* (and NOy)
— Net = gross mineralization - immobilization (- loss)

29
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e N mineralization rate

— Depends on:
 Availability of substrate (DON)
« Avallability of NH,* in soil solution
« C:N ratios in microbes and substrates
« Microbial activity and growth efficiency
— NH,* can be adsorbed onto clays, volatilized as NH,
and/or used in nitrification reactions

* N “loss” pathways substantially reduce net N
mineralization below gross N mineralization

— Plants/mycorrhizae excluded from mineralization assays

30



Nitrification: nitrifying bacteria convert
NH," to NO, and then NO;"
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Nitrification Is a 2-step process

— NH,* — NO, (Nitrosolobus); then NO,” — NOj
(Nitrobacter)

« Chemoautotrophs that gain energy from NH,* or NO,-
oxidation

NH,* availability is most important determinant of
nitrification rate

— Also need O, (aerobic process)

Heterotrophic nitrification is generally less
Important and less well understood
% of NH,* that undergoes nitrification?

— 0-4% Iin temperate forests; 100% in tropical forests
32
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* % of soil NH,* that undergoes nitrification?
— <25% In temperate forests vs. 100% in tropical forests
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Denitrification occurs where low O,, high
NO,", and sufficient organic C occur
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e Denitrification:

— Produces NO and N,O, and N, in anaerobic conditions

 NO and N,0O, also produced during nitrification, are important
greenhouse gases

— NO; supply is main limitation
* NO; is produced in aerobic conditions?

— Mainly heterotrophic

e Organic C supply is necessary
— Use NO; as an electron acceptor to oxidize organic C for energy

— Soils where O, supply Is spatially or temporally
variable have highest denitrification rates

35
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N loss (output) pathways:

Gaseous losses
— NH,* volatilization to NH; (pH > 7)
— Nitrification releases NO, N,O

— Denitrification releases NO, N,O, N,

. Solution losses (NOy) / leaching

— Important pollutant w/ disturbance; where N
deposition — N saturation; ag fields; feedlots

Erosion
Disturbance (fire, harvesting, etc.)

36



Processes involved in N cycling and gaseous emissions
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N gaseous “species’

— NH; reduces atmospheric acidity as it is converted
to NH,*, which can be deposited elsewhere

— NO & NO, (NO,) are highly reactive
» Lead to formation of tropospheric O, (Smog)
» Large contributors to acid rain and N deposition
— N,O is relatively long-lived (150 yrs) and not
chemically reactive in troposphere
» Potent greenhouse gas (200x more effective than CO,)
» Destroys stratospheric O,

— N, dominates atmosphere (78%) and has a MRT
of 13,000,000 years
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* Phosphorous cycling:
— Weathering of primary minerals (apatite) is main input
of new P into ecosystems
e Ca;(PO,); + H,CO, — 5Ca?* + 3HPO,? + 4HCO, + H,0
* Phosphate (PO,*) is primary form of available P in soils
— Phosphate does not undergo redox reactions
— No important gas phases; only dust in atmosphere

— Internal transfers predominate (esp. in old sites)
* Organic P is bound to C via ester linkages (C-O-P)
— P availability not as closely tied to decomposition as N
* Roots and mycorrhizae produce phosphatase enzymes that

cleave these linkages without breaking down C skeleton
40



Terrestrial Nutrient Cycling

* Phosphorous cycling:

— Inorganic P from weathering & decomposition can be:

1) Taken up by plants and microbes
— Tight cycling of P between organic matter and plant roots
— Microbes account for 20-30% of organic P in soils
» C:P controls balance between mineralization & immobilization
2) Adsorbed onto soil minerals (unavailable)
3) Precipitated out of solution (unavailable)
— Dueto 2 & 3, ~90% of P loss occurs via surface runoff and erosion

— P often limits ecosystem development over long time

periods as primary minerals weather

* Deposition becomes important source of P as ecosystems age

(i.e., as substrate weathers)
41
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 Much of the P cycle in soils is geochemical
— At low pH, ‘fixation’ by Fe, Al, Mn and Mg oxides dominates
— At high pH where CaCO, is present, P is ‘fixed’ as Ca;(PO,),

— Oceclusion (‘fixation’) of P makes it unavailable

» Over ecosystem development, P typically becomes the primary limiting
nutrient (over long time scales)
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Contrasting Biogeochemical Cycles
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* |Interactions among Element Cycles

— Supply rate of the most limiting nutrient largely
determines rate of cycling of all essential nutrients

« Function of absorption by vegetation

— Dynamic balance between rate of supply in soil and nutrient
demands of vegetation

* Vegetation has a limited range of element ratios (stoichiometry)

* Most strongly limiting element has greatest impact on NPP

— Absorption of other elements is adjusted to maintain relatively
constant stoichiometry

— But plants can absorb more nutrients than they need (to a certain
point) and “store” them for later

* Many/most ecosystems characterized by nutrient co-limitation
45
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