Terrestrial H,O and Energy Balance

*ODbjectives

—To gain a basic understanding of:
*Terrestrial ecosystem energy balance
*Terrestrial ecosystem hydrologic balance



Terrestrial H,O and Energy Balance

*H,0O & Energy balances are
very interdependent

—Conservation of energy/mass
—Solar energy is the base of

energy balance, and also drives

hydrologic cycle

sEvapotranspiration (i.e., LE)

—Hydrologic cycle accounts for
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Terrestrial H,O and Energy Balance

*H,O cycle exerts large control on biogeochemical
cycles

—Influences biotic processes

—Dissolution/transfer of nutrients within/among ecosystems

Humans have greatly modified the hydrologic cycle
—Use ~50% of readily available fresh water (70% by 2050)
—Decreased streamflow & groundwater supplies
—Regional and global climate impacts of LULC change
—Sea level rise (thermal expansion and melting of ice)
—“Water vapor feedback”



«Critical to understand the [N :
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Net radiation (R,

* R ;= energy input to ecosystem
— Energy available to an ecosystem

o Surface energy absorption is a
balance between
— Input (long- & shortwave radiation)
— Output (long- & shortwave radiation)  =|

e True for ecosystems, leaf surface, “. . =~ .
globe etc. e

net (Km Kout) + (Lin - I—out)




Net radiation (R,

K

in

— Direct (~90%), diffuse, and

reflected shortwave radiation

K

out

— Proportion of K,, absorbed

depends on surface properties
» albedo (a): 0-1 (1 most reflective)

¢ Koutz ar* Kin

— More complex canopies — lower a

(and lower K

out

) — higher R,

Table 4.1 Typical values of albedo for the major surface
types on Earth

Surface type Albedo
Ocean and lakes 0.03-0.10*
Bare soil

Wet, dark 0.05

Dry, dark 0.13

Dry, light 0.40
Evergreen conifer 0.08-0.11
Deciduous conifer 0.13-0.15
Evergreen broadleaf 0.11-0.13
Deciduous broadleat 0.14-0.15
Arctic tundra 0.15-0.20
Grassland 0.18-0.21
Savanna 0.18-0.21
Agricultural crops 0.18-0.19
Desert 0.20-0.45
Sea ice 0.30-0.45
Snow

Old 0.40-0.70

Fresh 0.75-0.95

Data from Oke (1987), Sturman and Tapper (1996),
Eugster et al. (2000), Hollinger et al. (2010)

“‘Albedo of water increases greatly (0.1-1.0) at solar
angles less than 30°



Net radiation (R,

I—in
— Determined by Ty,
* Most absorbed radiation is reemitted (emissivity is high)

LOUt

— Determined by T, @and emissivity
— Emissivity in vegetated ecosystems is ~1, so largely
drivenby T

surface

Both L;, and L, depend on K;, and T ace/sky
— Also depends on a and evapotranspiration rates

Why are cloudy nights warmer than clear nights?
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Net radiation (R,

* Rnet = (1'a)(Kin) T 0(£skyTsky4 B gsurfTsurf4)
— 0 = Stefan-Boltzman constant; € = emissivity
- K,,, &, surface roughness, and T, have largest
impact on R,
» Canopy structure strongly influences T and,
therefore, energy exchange
— a | as canopy complexity 1

— Roughness — mechanical turbulence that transfers
energy from surface to atmosphere



HI Tropical Dry Forest Conversion
T

surf
°1
Roughness?

*\Windspeed
T, but less

Rnet = (1-2)(Kip) + 0(Egiy Toky” - mechanical
Esurt T surr') turbulence

regrowth feedback

Microclimate feedback
LAND CLEARING
D GRASS INTRODLCTION Flammability/Rapid

woooY

GRASSLAND
VEGETATION

Freifelder et al. 1998




The snow — albedo

feedback loop

Do variations in
seasonal snow cover
and associated changes
In albedo and
atmospheric heating
result in a positive
feedback to the climate
system?

Decreases in
sSNOwW cover

Increase in
heat absorption

Decreases in
albedo

Recent studies have found reductions in high-latitude
SNow cover.
(Dye, 2002; Stone et al., 2002; Chapin et al., 2005; Euskirchen et al., 2006)
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Net radiation (R,

e Energy input = Energy loss
- Radiative energy absorbed = Non-radiative energy lost

e R =H+LE+G+P +DS

— sensible, latent, & ground heat flux; photosynthesis,
Dstorage in biomass

° Rnet: H T LE+++
— G balances over 24 hrs
— P ~1-5% of K,
— DS typically small & balances over 24 hours
- Rt =H+LE

net 11
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Total Area Burned (acres)

Total Annual Area Burned in Alaska 1950-2006
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Fire, stand structure, and surface
energy exchange

* Fire release large amounts of greenhouse gases
to the atmosphere

— Also changes energy and water balances

 How do post-fire shifts in stand structure impact
climate via changes in surface energy
exchange?

* R, H, LE, a, and T In a 1999-burn (3 yrs),
1987-burn (15 yrs), and 1920-burn (82 yrs;
Control = “unburned”)

— 1999-burn = grasses; 1987-burn=deciduous forest;

— 14
Control = spruce forest Liu & Randerson 2007



Fire, stand structure, and surface
energy exchange
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Liu & Randerson 2007

Rpet | 32% and 34% for 1999-burn and
1987-burn (less energy available for
ecosystem processes, and heating the
atmosphere)

H | 61% and 39% for 1999-burn and
1987-burn

LE | 18% and 21% for 1999-burn and
1987-burn
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Fire, stand structure, and surface
energy exchange

Driven largely by changes in a, which
altered the amount of surface energy
available to drive H and LE
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Fire, stand structure, and surface
energy exchange

L%_/Nl
I.b} i
e AT L Fire-induced changes in the surface
» energy budget led to overall climate
) JLINIIRAEE cooling due to increased a and

decreased Bowen ratio () in

| oy A e recently burned stands

o 10 20 30 40 50 60
Stand Age (yoars)

Liu & Randerson 2007 17



Net radiation (R,

« Bowen ration (§): H/LE 15 =
— Important interactions . U 'f“g“dw;
between H and LE v n B;?ssiam

e LE cools surface & | H % 1 oo A %%o,. | 3
« H warms surface air & 1 LE = o b .__’ﬁ’?‘ﬁf;@ -
— B: Index of strength of linkage § 6;3‘33;:-'@ | 3
between energy & H,O cycles ; 3_“??%‘5 Wy gﬁm
« Lower B — the tighter the linkage d e e
—<0.1to0 >10 ° 03 :d —

—H or LE can dominate

 LE dominates (i.e., B < 1):

— Moist env., active vegetation,
rough canopy/strong winds

Latent heat flux (MJ m2d")

18
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Hydrologic Cycle

1
C} Atmosphere 13,000 C} O
|
k

[
I ! . Evapotranspiration accounts
: : g ! for ~80% of turbulent energy
s £ = transfer to the atmosphere
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rre s ey / o
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Hydrologic Cycle

 H,O Is essential to biological processes

 H,O is the MAJOR greenhouse gas

— Water-vapor feedback to warming

 Warm air holds more water & warming causes more
water to evaporate

« 1 Water content of atmosphere
 Absorbs more infrared radiation ?

 Warms the atmosphere

20



*Terrestrial Ecosystem Water budget:

Inputs and outputs (vertical and lateral)
Internal transfers

Evaporation i
Transpiration
Precipitation D &

—
’—_-§—"
—

— 21
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Why do plants use so much water?

sConstant tradeoff between
CO, uptake & H,0O loss for
photosynthesis

*Driven by strong gradients
In water potential along the
soil-plant-atmosphere
continuum

22



Hydrologic Cycle

Ecosystem = bucket (Inputs = Outputs + DStorage)

Inputs
— Precipitation, Cloud/Fog water, Groundwater, Dew

Outputs

— Evaporation and Transpiration (& sublimation)
— Runoff

— Drainage / base flow

Storage

— Solil (and vegetation)
* Primarily a function of soil depth & soil texture

— Balance between inputs and outputs

23



Water inputs to ecosystems

Precipitation
— Major water input to most ecosystems

Groundwater
— Phreatophytes; stream-side communities

Fog deposition / cloud interception

— 250% of input in some systems (e.g., montane
cloud forests)

Dew

24



Canopy Interception

0.8

0.7
06|

sCanopies intercept a large
proportion of precipitation
(10-20%) and cloud/fog H,O

05F
0.4

03
0.2}

*Ecosystems differ in canopy
Interception/storage
*Depends mainly on LAl o
*Depends on precip size 23 4 56 7 8 9 10 1
Leaf area (m~©)
& wet vs. dry canopy 801 {

Interception storage (kg)

0.1

Intercepted H,O can be:
*Evaporated, absorbed, N B ory
throughfall, or stemflow 1wt = — e

T T T T T T A%I
0 10 20 30 40 50 50 0 70
Precipitation (mm)

Interception (%)




Water movement in ecosystems

 Water moves along energy gradients
— From high to low potential energy
» Less negative to more negative water potential
e What controls energy status of water?
— Pressure
e Gravity
e Forces created by organisms
— Osmotic gradients (solute concentrations)
— Matric forces (adsorption)

yt:yp+yo+@

26



Water movement in soll

Js = Water flux rate through soill

Ayt = Water potential gradient (gravity and matric forces predominate)

Ls = Hydraulic conductivity (resistance)
| = Path length (resistance)

27



Water movement in soll

* Infiltration depends largely on hydraulic
conductivity (L)
— Texture
— Aggregate structure
— Macropores made by animals and roots

— Impermeable layers
« Calcic layer in desert
 Permafrost in cold climates

 When Infiltration rate Is < precipitation rate, runoff
(overland flow) occurs

28



Water movement in soll

e Water holding capacity

WHC = Field Capacity (FC) - 0 Total water
Permanent Wilting Point (PWP) _ -
£
— FC =amount of water left 330
after drainage from gravity 3
— PWP = point at which roots %2”
can no longer remove water
from soil particle surfaces 3
e Texture has very large 0 .
] Sand Sandy Loam Siit Clay Clay
Impact on WHC and plant loam loam  loam

available water

29



Roots

Water movement in soll

50

/N

Shrubs .
100 2\

Most roots are in upper soll
Roots can extend far into soil
Water moves into roots when roots

Soil depth (cm)

150 [ ‘|

have lower y than soil (more -) w0

As roots draw water away from e "
adjacent soil, water flows thru soils fﬁ;ﬁ & ﬁ%:;f?
towards roots p .;ﬁ‘ ﬁf«aﬁ o y ?
Continues until matric potential is " WU T VI |

too high I B B |

Root hairs and mycorrhizae
provide low-cost ways to explore
large volumes of soill

o

Maximum roating depth (m)

201



Water movement in plants

Jp =Lp S, t
‘]p = Water flux rate through plants
Ayt = Water potential gradient
L

P = Hydraulic conductivity (resistance)
L = Path length (resistance)

31



Water movement in plants

 Water moves in continuous column from soil pores

or film on soll particles — roots — stem — leaf —
atmosphere

e Plant expends no energy Iin transporting water
— Passive transport driven by transpiration

— Very different from the considerable metabolic energy
used by plants to acquire C, N, P, etc.

32



Water movement in plants

i

adhesion

« Upward movement enabled by
strong cohesive forces among
water molecules and adhesion

to conduit

— Counteracts gravity

— Allows H,O to move up trees as
tall as 100m

33



Water movement in plants

Day Night
Wday’ Wnight 9
";'\ }I' f\“
) -90 Air -30 » PN )
fy l'\"‘*
-4.2 Leaves -1.2 y
Transpiration
__'___,.—l—-—l-...___-‘_—"'_—_,_—"'_ .
40 Sutace 45

soil

K

4.1 Roots 1.2

Hydraulic lift

Deep

soil -1.0

-1.0

*\Water moves along pressure/energy gradient
*Pressure gradients typically differ in day vs. night s



Water movement in plants

*Hydraulic lift 15t shown by
Richards & Caldwell (1987) for
Artemisia tridentata

*Since shown for many species
*\Widespread phenomenon

sImportant implications for:
* Recharge upper soil layers

 Facilitating nutrient

mineralization S
« Neighboring plant utilization -
« Prolong / enhance fine root & LTI e
activity .

! r sage
wtwm pafieten (palke theambush)

35
Caldwell et al. (1998)



Water movement in plants

*Hydraulic lift can be reversed
«“Hydraulic Redistribution” a B

«Transports surface moisture to
deeper soil layers

*Potentially important for: Before rain
» Phreatophytic species
 Tolerance of water stress during d il § T ‘ 3

droughts 3 Mol A A

*Hydraulic redistribution increases  _ T wﬁ U \J Ll i
dry season transpiration in the 8 f o L“" \“‘J k““
Amazon by ~40% 3 Lateral roo W l w\/kf
« Direct link between plant roots of Top 100 \/‘FU\(‘J
and regional climate via LE & S e
36
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Water movement in plants

* In stems, water moves upward through xylem
— Capillaries composed of functionally dead cells

e Cavitation (embolism) when enough pressure is
applied to break water columns under tension

— Largely irreversible in many species
 Diffuse-porous (can) vs. ring-porous (cannot)

e Several “safety factors” keep cavitation from
being common

— Fine roots act as “hydraulic fuse”
* More vulnerable to cavitation, but more easily replaced

37
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Water movement in plants

18 15 12 9 6 -3

Woiant @t 100% conductance loss

g Western white pine

Douglas fir

1000 2000
Sapwood area {cmz}

«“Safety Factors”

*Plants tend to produce stems that resist
cavitation at lower potentials than
typically experienced

*Area of conducting tissue (sapwood
area) varies by species, but is linearly
related to leaf area
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Water movement in plants

«“Safety Factors”
*\Water storage in stems (from hours to 5-10 days of water)
*Recharged at night
*Predawn leaf water potential is a good index of soil water status
& degree of drought experienced by plants

—: 9| Transpiration -
=
o \ _ .1{] 1
E P
= S
Eql | £
] o
5 8
o : 45 O
33 £
® AN =
= ' Water absorption ]
ﬂ 1 _.,...+++' . . . . . D
O 2 4 6 8 10 12 14 22 24

39
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Water movement in plants

 Driving force for water loss from leaves is vapor
pressure gradient
— Depends on temperature and water vapor in bulk air
— Vapor pressure deficit (VPD)

* Plants control H,O loss directly by creating
resistance to H,O movement between leaf & air
— Stomatal conductance
— Boundary layer
— Pubescence
— Leaf orientation

40



Water movement in plants

LONG-TERM - - SHORT-TERM
CONTROLS CONTROLS
STATE Interactive Indirect Direct
FACTORS controls controls controls
Surface
Plant roughness
BIOTA ——— functional Aergdynamm
types conductance
/ Photasynthetm
TIME ( ) capacity
Soil \ EVAPO-
ol TRANSPIRATION
resources Stomatal *
Water-holding ‘ conductance
/ v capacity
PARENT
MATERIAL Water

Precipitation gl availability

Net radiation
I'VPD

CLIMATE

41



Water losses

e Evaporation from wet °8r o
canopies "
— Can be a large fraction of

precipitation
— Depends on:
 Interception (leaf area) 0.1
 Surface roughness T e 4 s s 7 & o 10
(mechanical turbulence) Leaf area (m?)
e Climate (VPD)

06|

05} Q
{0.

o
fé‘
iy
L)
&

04F

03
0.2}

Interception storage (kg)
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Water losses

= o
. Soil water availability limits 2 [ % oo -
ET from dry canopies I - _

— Insensitive until ~75-80% of :f \
soll available water is gone % o8 N— ]

Available soil water
(% of capacity)
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Water losses

1400

e P=ET+R%DS
—~P+DS=ET+R
—-P=ET+R

-~ P-ET =R

Runoff is the “leftovers” after
ET

— Also determined by infiltration

1200
|

1000
|

600
|

Evapotranspiration
% ° o °© o .

(]
§
o L *J
/° 0 °

o

Streamflow or evapotranspiration (L m™ yr'1)
800
1

400

A%
3

e Particularly in arid ecosystems 500 1200 1500 1800
. : Precipitation (L m2yr") (mmyr")
* In moist ecosystems, R driven
primarily by P

44



Water losses

« Management (e.g,
deforestation) impacts
balance of inputs & outputs

— Deforestation
e |ET
| interception, stemflow, and
throughfall — | infiltration and 1
runoff — 1 streamflow
— Reforestation / afforestation
should be the opposite

Change in streamflow (mm yr’1}

-200

-400

400 |-

o "opo

300 | o
200

100

0

0 20 40 60 80 100
Area deforested (% of watershed)

400 -
200 f °

-600 -

| | 1 |_=*

0 10 20 30 40
Plantation age (years)
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Water losses

 What proportion of watershed evapotranspiration
IS evaporation vs. transpiration?

— Used ?H and 180 isotopes to partition ET into
transpiration and evaporation (soil, canopy, and water)

— 15 large watersheds with MAP from <500 to >6000 mm

46
Ferguson & Veizer 2007



Water losses

o Water limited (<1500 mm) @ ramer o ree
. . . . :5" 800 | ?:1%86"0‘:0'0001 Upper!\‘.ljger'/_
— Linear increase in T with P E wnie oty +
. . - 600 Black Volta® .-
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. % Her Murray-Darling "___-—"' Ottawa
— Ti1s ~71% of ET and 55% Swol A SCuimere
of P < sl

0-' 1 1 1 1
0 200 400 ©00 &00 1000 1200 1400 1600
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Water Iosses

* Very tight coupling
between hydrologic
and carbon cycles
— C cycle limited by T?
— T limited by C cycle?
— Both limited by same

factors?
T was 3 orders of
magnitude larger than
NPP

(b)

Y 5

T (mm or 10° g H,O m“yr

NPP (g C m*yr")

1400 T T T T 1 7 T
--=- Radiation-limited -!----1-‘;----
1200 : @
BAR® *\, §
1000 {/ 012 <Y ¥ . IS
800} \@Z . .
s @, 1
: cﬁ\ AT M © North Amdrica
600} \ﬁ% . , '
; 8 "10 @ Africa g
400} 1 o5 P © South Am?l‘ica
% 35’3 © Australia/New Guinea
200 ‘3\ . NPP (g C i” yi')
U 1 1 1 1 Il. 1 1
0 ‘IDUO 2000 3000 6000
P (mm or 10° g H,O m* yr")
=== Raliation-limited ============
1200 .
1000 f | ‘,* S g _ * o
800 |- &, 1o v
'T.\& A
600 | \@@‘ "ot - ® LTER
. e GPPDI
4DD 'r ﬁ
e 0g
200 EB - ©®
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