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Abstract. Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding
ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels

are urgently needed.We quantified the spatial variability in live and dead fine fuel loads andmoistures at four guinea grass
(Megathyrsus maximus) dominated sites. To assess temporal variability, we sampled these four sites each summer for 3
years (2008–2010) and also sampled fuel loads,moistures andweather variables biweekly at three sites for 1 year. Live and

dead fine fuel loads ranged spatially from 0.85 to 8.66 and 1.50 to 25.74Mg ha�1 respectively, and did not vary by site or
year. Biweekly live and dead fuel moistures varied by 250 and 54% respectively, and were closely correlated (P, 0.05)
with soil moisture, relative humidity, air temperature and precipitation. Overall, fine fuels and moistures exhibited

tremendous variability, highlighting the importance of real-time, site-specific data for fire prevention and management.
However, tight correlations with commonly quantified weather variables demonstrates the capacity to accurately predict
fuel variables across large landscapes to better inform management and research on fire potential in guinea grass

ecosystems in Hawaii and throughout the tropics.
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Introduction

The introduction and spread of invasive species is one of the
leading causes of biodiversity loss in Hawaii (Loope 1998,

2004; Loope et al. 2004; Hughes and Denslow 2005). A cycle
of positive feedbacks between invasive grasses and anthropo-
genic wildfire is now a reality in many Hawaiian landscapes
formerly occupied by native woody communities (D’Antonio

and Vitousek 1992; Blackmore and Vitousek 2000; D’Antonio
et al. 2001). The synergistic interactions of fire and invasive
species pose serious threats to the biological integrity and

sustainability of remnant Hawaiian ecosystems (LaRosa et al.
2008). Coupled with frequent anthropogenic ignition sources,
invasive grasses can dramatically increase fire frequency, often

with severe consequences for native plant assemblages
(Vitousek 1992).

Guinea grass (Megathyrsus maximus, [Jacq.] B.K. Simon &

S.W.L. Jacobs (Poaceae), previously Panicum maximum and
Urochloa maxima [Jacq.]), a perennial bunchgrass originally
from Africa, has been introduced to many tropical countries as
livestock forage (D’Antonio and Vitousek 1992; Portela et al.

2009). It was introduced to Hawaii for cattle forage and became
naturalised in the islands by 1871 (Motooka et al. 2003). Guinea
grass quickly became one of the most problematic non-native

invaders in Hawaiian landscapes because it is adapted to a wide
range of ecosystems (e.g. dry to mesic) and can alter flamma-
bility by dramatically increasing fuel loads and continuity.
Year-round high fine fuel loads, particularly a dense layer of

dead grass in the litter layer, maintain a significant fire risk
throughout the year in guinea grass dominated ecosystems in the
tropics. In addition, this species recovers rapidly following fire

by resprouting and seedling recruitment (Vitousek 1992;Williams
and Baruch 2000). In Hawaii, as well as in many tropical
areas, the conversion of land from forest to pasture or agriculture

and subsequent abandonment has resulted in increased cover of
invasive grasses across the landscape (Williams and Baruch
2000). Because guinea grass recovers quickly following dis-

turbances (e.g. fire, land use change) and is competitively
superior to native species under most environmental conditions
(Ammondt and Litton 2012), many areas of Hawaii are now
dominated by this non-native invasive grass (Beavers 2001).
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A small number of studies have examined fuel loads in
guinea grass dominated ecosystems in Hawaii (Beavers et al.
1999; Beavers and Burgan 2001; Wright et al. 2002). However,

these prior studies have been limited in spatial and temporal
extent and their representativeness of the larger landscape is
unknown. The reported variability in fuel loads in guinea grass

stands in Hawaii is tremendous, ranging from 9.7 to 30.4Mg
ha�1 (Beavers et al. 1999; Beavers and Burgan 2001; Wright
et al. 2002), but the driver of this variability is unknown. These

overall values are generally similar to those reported for grass
fuel loads in pastures elsewhere in the tropics (Kauffman et al.

1998; Avalos et al. 2008; Portela et al. 2009). In cattle pastures
of the Brazilian Amazon dominated by a similar grass species

and in a similar climate, dead grass comprised 76 to 87% of the
grass fuel load (Kauffman et al. 1998). These pastures were
sampled less than 2 years after the previous fire, demonstrating

that the rapid accumulation of dead fuels may be the primary
driver of fire spread and behaviour in these grasslands. Dead fuel
moisture in guinea grass in Hawaii has previously been reported

to show a strong diurnal pattern (.20% increase at night) and a
.50% increase in dead fuel moisture content after precipitation
events (Weise et al. 2005). In similar tropical grasslands,

variability in fuel moisture has been shown to be closely related
to total fuel loads and has been accurately predicted using
climate variables (de Groot et al. 2005; Weise et al. 2005).

In Hawaii, research quantifying the spatial and temporal

variability of fine fuels, ratio of live to dead fuels, fuel moisture
content, and the relationship of these variables to current and
antecedent weather conditions and time since fire are largely

lacking and urgently needed. To accurately predict and manage
fire occurrence and behaviour in areas dominated by guinea
grass, it is imperative to first determine variability in fuels,

particularly for dry areas of the island (Giambelluca et al. 2013)
where anthropogenic fire ignitions are common and risk of fire
is greatest. In addition, it is imperative to determine the drivers
of this spatial and temporal variability in fuels to improve

predictive capacity and better inform management decisions.
Without improved fire prediction capability and rapid fire
management response, wildland fires will continue to alter

the composition and structure of these landscapes, contribute
to the loss of native species diversity and perpetuate the invasive
grass–wildfire cycle in guinea grass dominated ecosystems.

The overall goal of this study was to assess the spatial and
temporal variability in guinea grass fuels (live and dead fuel
loads andmoistures) in high fire risk areas on theWaianae Coast

and North Shore of Oahu, Hawaii. Specific objectives included
quantifying the:

(i) spatial variability in live and dead fine fuel loads in guinea
grass ecosystems in high fire risk areas;

(ii) temporal variability at multiple scales (interannual, intra-

annual and fine-scale (3 times per week)) in fuel loads and
fuel moistures in guinea grass ecosystems in high fire risk
areas and

(iii) relationship between antecedent weather variables (pre-
cipitation, relative humidity, wind speed and temperature)
and fine fuel loads and moistures to explore predictive

capacity to inform fire management of guinea grass eco-
systems in Hawaii.

Methods

Spatial and interannual temporal variability
in guinea grass fuels

Research was initiated in the summer of 2008 to quantify the
spatial and interannual variability of fuel loads in non-native

dominated guinea grass ecosystems on Oahu’s Waianae Coast
and North Shore areas (Fig. 1). Sites were located at Schofield
Barracks, Makua Military Reservation, Waianae Kai Forest

Reserve and Dillingham Airfield (Table 1) to encompass the
widest range of spatial variability in environmental conditions
occurring on the leeward, fire-prone area of Oahu. All sites have

been heavily utilised by anthropogenic activity (i.e. military
training, abandoned agricultural land) and are currently domi-
nated by homogeneous stands of guinea grass with some inva-

sive Leucaena leucocephala (Lam.) De wit (Fabaceae) in the
overstorey. There is seasonal variability in precipitation pat-
terns, with most precipitation falling in the winter months of
November through April (Giambelluca et al. 2013). All study

sites have deep, well drained soils that originated in alluvium or
colluvium weathered from volcanic parent material (Table 1).
Soils at Dillingham Airfield are in the Lualualei series (fine,

smectitic, isohyperthermic Typic Gypsitorrerts), formed in allu-
viumand colluvium frombasalt and volcanic ash.AtMakua, soils
in some sample plots are also in the Lualualei series and some

have been classified broadly as Tropohumults-Dystrandepts.
Soils at Waianae Kai are in the Ewa series (fine, kaolinitic, iso-
hyperthermic Aridic Haplustolls), formed in alluvium weathered
from basaltic rock. At Schofield Barracks soils are in the Kunia

series (fine, parasesquic, isohyperthermic Oxic Dystrustepts),
formed in alluvium weathered from basalt rock (Table 1).

Fuels were quantified by selecting and measuring at least

three plots at each site. Six plots were sampled atMakua due to a
wider range of expected fuel loads at this site. Plots were
selected based on continuous grass and limited overstorey tree

cover using satellite imagery. Each plot was initially measured
in the summer of 2008 and a subset of plots was remeasured in
the summers of 2009 and 2010. One plot at Waianae Kai Forest

Reserve and two plots at Schofield Barracks were abandoned
after the 2008 sampling respectively due to cattle and military
activity. The remaining two plots at Waianae Kai were aban-
doned due to cattle activity after the 2009 sampling.

Fuel parameters measured during yearly plot visits were
(i) total fine fuel loads (standing live and dead, and litter),
(ii) fuel composition (live and dead grass and herbs), and

(iii) fuel moisture content for both live and dead grass fuels.
At each 50� 50-m sampling plot, three parallel 50-m transects
were established 25m apart and all herbaceous fuel was

destructively harvested in six 25� 50-cm subplots at regularly
spaced fixed locations along each transect (n¼ 18 per plot).
Subsequent years’ samples were offset 3m from previously
clipped subplots. Samples were separated into the following

categories: live grass, live dicots, standing dead grass, standing
dead dicots and surface litter. Samples were collected, placed
into plastic bags to retain moisture, weighed within 6 h of

collection, dried in a forced air oven at 708C to a constant mass
and reweighed to determine dry mass and moisture content
relative to oven-dried weight. Some live and dead woody fuels

existed in our study sites, but we were primarily interested in
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characterising fine fuels associated with guinea grass, so did not
include woody fuels in our analyses. Overall, live trees were

infrequent in most plots, comprising only 5.8% of the total fuel
load on average (range of 0–22%). Dead woody fuels, in
turn, constituted only 0.5% of the total fuel load on average

(range of 0–5%).

Intra-annual temporal variability in guinea grass fuels

Intra-annual variability of live and dead fuel loads and moisture
content was measured approximately biweekly (27–33 sample
dates per site) for 1 year (8 October 2009 through 24 September
2010) in three plots on leeward Oahu – Dillingham Ranch

(immediately adjacent to the Dillingham Airfield sites),
Schofield Barracks and Yokohama State Park (proxy for

adjacent Makua, where access is limited due to unexploded
ordinance; Fig. 1; Table 1). All sites were dominated by guinea

grass, with scattered L. leucocephala in the overstorey.
At each sampling location, one 50-m transect was established

per sample date, along which all vegetation and litter in

25� 50-cm subplots at six locations (0-, 10-, 20-, 30-, 40- and
50-m marks) was clipped and collected. Each subsequent
transect was offset 1m from and parallel to the previous

sampling transect. Dillingham Ranch and Yokohama sites were
flat and the Schofield Barracks site had a ,5% slope, with a
south-east aspect. Transects were oriented parallel to the slope
(Schofield), or perpendicular to the road (Yokohama and

Dillingham Ranch). Live and dead (standing dead and litter
combined) fine fuels were processed for moisture content and

Table 1. Descriptions of sites sampled for spatial variability in fuel loads and temporal variability in fuel loads and fuel moisture

MAP,mean annual precipitation (Giambelluca et al. 2013);MAT,mean annual temperature (T. Giambelluca, unpubl. data); Soil classifications

were from the USDA Natural Resources Conservation Service (see http://websoilsurvey.nrcs.usda.gov/, accessed 30 May 2013)

Site Elevation (m ASL) MAP (mm) MAT (8C) Soil classification

Dillingham Airfield 4 900 24 Lualualei Series: Typic Gypsitorrerts

Dillingham Ranch 5 851 24 Kawaihapai Series: Cumulic Haplustolls

Makua 108 864 23 Tropohumults-Dystrandepts and Lualualei Series: Typic Gypsitorrerts

Schofield Barracks 297 1000 22 Kunia Series: Oxic Dystrustepts

Waianae Kai 193 1134 23 Ewa Series: Aridic Haplustolls

Yokohama 7 857 24 Lualualei Series: Typic Gypsitorrerts

Spatial sites

Waianae Kai

Schofield

Dillingham Ranch
Yokohama

Makua

Temporal sites

0 5 10 20 km

0 50 100 200 km

N

Dillingham Airfield

Fig. 1. Location of sample sites for spatial and temporal variability sampling in fuel loads across the Waianae

Coast and North Shores of Oahu, Hawaii. Black circles indicate sites that were sampled during the summers of

2008, 2009 and 2010 (spatial and interannual temporal sites). White squares indicate sites that were sampled

biweekly for 1 year (intra-annual temporal sites). Siteswith both a black circle and awhite squarewere used for both

spatial and temporal sampling.
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total dry weight, as described above. Additionally, soil volu-
metric water content in the top 12 cm of mineral soil was
quantified in every subplot at each sampling date with a

CS620HydroSenseWater Content Sensor (Campbell Scientific,
Logan, Utah). Six measurements were taken adjacent to each
subplot and averaged across subplots for each sampling date.

Fine-scale temporal variability in guinea grass fuels

To gain a better understanding of changes in fuel moistures
following precipitation events at a finer temporal resolution, we

measured live and dead fuel moistures three times per week for
4 weeks at the Dillingham Ranch site. The first sampling event
corresponded to the first week of fall (autumn) rains
(1 November 2010). At each sampling date, six randomly

located samples of live grass and standing dead grass were
collected, one each from six randomly located sampling loca-
tions. Vegetation samples were processed to determinemoisture

content as described above.

Analysis of spatial and interannual temporal
variability of guinea grass fuels

Due to significant imbalance and heteroskedasticity in the data,
we used a repeated-measures mixed model analysis to determine
whether differences exist in fine fuels that could be attributed to
site (spatial) or year sampled (temporal) variability. Response

variables examined in separate analyses were live fine fuels (live
grassþ live herbs), dead fine fuels (standing dead grassþ litterþ
dead herbs) and total fine fuels (all live and dead fine fuel com-

ponents). Plots were treated as subjects to account for the
repeated measurements taken over time. Site was treated as a
fixed factor, year was treated as a random factor and the inter-

action between site and year was tested to determine whether
there was a differential pattern over time at separate sampling
sites. Restricted maximum likelihood estimates (REML) of
parameter valueswere derived using IBMSPSS v.20 (IBMSPSS,

Inc., Chicago, IL) and SAS 9.2 for Windows (SAS Institute Inc.,
Cary, NC, USA). REML is preferred to maximum likelihood
(ML) as it gives unbiased estimates of covariance parameters by

taking into account the loss of degrees of freedom from esti-
mating the fixed effects in the model (West et al. 2007). At least
four covariance structures were considered for each response

variable and the best fitting structure was chosen based on
available information criterion (�2 log-likelihood, Akaike’s
Information Criterion, Schwarz’s Bayesian Criterion) (West

et al. 2007). A heterogeneous Toeplitz structure was selected for
all response variables. Significance of random effects was
determined by REML-based likelihood ratio tests between full
and reduced models (West et al. 2007; McCulloch et al. 2008).

Significance of fixed site effect was determined by least-squares
F-tests, with significance determined at a¼ 0.05. Post-hoc
multiple comparisons using the least square difference method

were performed to elucidate differences between individual sites.

Analysis of intra-annual temporal variability
of guinea grass fuels

A repeated-measures mixed model analysis was used to deter-

mine whether there was a difference in fine fuel load or fuel
moisture that could be attributed to site or time sampled.

Additionally, we were interested in potential relationships
between fuel load and fuel moisture, and onsite weather vari-
ables (antecedent precipitation, maximum wind speed, relative

humidity and air temperature). Response variables examined in
separate analyses were live fine fuels (live grass and live herbs),
dead fine fuels (standing dead grass, litter and dead herbs), total

fine fuels (all live and dead fine fuel components), live fuel
moisture content and dead fuel moisture content. Site and
sample week were both treated as fixed factors, as we were

interested in all the levels of each factor. Weather data were
downloaded from onsite Remote Automated Weather Stations
(RAWS) at each sampling site and variables were chosen as
covariates based on bivariate correlations between weather and

response variables. An iterative backwards model selection
process was used to determine which explanatory variables
contributed to the best model fit, starting with a full model with

all covariates and two-way interactions but without the site and
time factors. The model was iteratively reduced by removing
terms that were not significant by least-squares F-tests at

a¼ 0.05.After the best covariate-onlymodelwas determined, site
and time factors were added to see if they explained any addi-
tional variability in the data. Weather covariates considered in

each model were 7-day antecedent precipitation (Precip), 7-day
average maximum air temperature (Temp) and 7-day average
minimum relative humidity (RH). Additionally, soil moisture
content (SM) was included as a potential explanatory covariate.

Although fuel parameters, particularly fuel moisture can
change on very short time scales (i.e. hourly) (Viney 1991), for
fire management (i.e. planning prescribed fires, estimating

needed suppression resources) it is also useful to understand
how longer scale (i.e. daily, weekly) climate patterns affect fuel
moisture. After examining relationships between weather vari-

ables at multiple intervals (daily, 3-, 5-, 7-, 10- and 14-day
averages), 7-day average provided the strongest relationship
with fuel moisture. REML estimates of parameter values were
derived using IBMSPSS v.20 (IBMSPSS, Inc., Chicago, IL). At

least four covariance structures were considered for each
response variable and an autoregressive structure was chosen
based on available information criterion for all response vari-

ables. Significance of fixed effects was determined by least-
squares F-tests at a¼ 0.05 and post-hoc multiple comparisons
using the least square difference method were performed to

elucidate differences between individual sites.

Analysis of fine scale temporal variability
of guinea grass fuels

The strongest combinations of predictor variables to explain
the change in live and dead fine fuel moisture at the finer tem-
poral resolution (3 times per week for 4 weeks) were determined
using backwards stepwise linear regression, with weather cov-

ariates derived from onsite RAWS as described above (Precip,
Temp, RH). Additionally, 7-day average maximum sustained
wind speed (Wind) was used as a covariate, after examining

several date ranges. Because we wanted to see how antecedent
weather altered fuel moisture between sampling dates, we used
the change (D) in live and dead fuel moistures from one sam-

pling date to the next as the response variables. All covariates
and two-way interactions between covariates were considered
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for inclusion in linear regression models, and were iteratively
removed based on non-significant F-tests, with a¼ 0.15 used as
the criteria to enter or remove terms from possible models.

Results

Spatial and interannual temporal variability
in guinea grass fuels

Total fine fuel loads ranged widely across sites and years, from
3.26 to 34.29Mgha�1. Total fine fuels did not vary significantly

by site (P¼ 0.17). Live and dead fine fuel loads ranged from 0.85
to 8.66 and 1.50 to 25.74Mgha�1 respectively. Neither live
(P¼ 0.29) nor dead (P¼ 0.11) fine fuels varied by site. At all four

sites, there was more dead fine fuel (standing dead leaves and
sheaths and litter) than live fine fuel, with the live : dead ratio
ranging from0.21 in plots atMakua to 0.65 at SchofieldBarracks.

The among-years variance component for total fine fuel
loads was estimated to be zero (P¼ 1.00), indicating that there
were no consistent year effects across all sites. However,
there was strong evidence that sites varied differently over time

(site�year interaction; P, 0.01; Fig. 2). Makua and Schofield
showed a trend of increasing fine fuel loads over time, whereas
Waianae Kai had fairly constant fuel loads over time and

Dillingham had highest fine fuel loads in 2009. Similarly, there
was no consistent year effect in either live (P¼ 1.00) or dead
(P¼ 1.00) fine fuel loads, but the change in both live and fine

fuels over time differed across sites (site�year interaction,
P, 0.01 for both dead and live; Fig. 2).

Intra-annual temporal variability in guinea grass fuels

There was considerable temporal variability in biweekly total

fine fuel loads at all three sites (intra-annual temporal sites,

Fig. 1). Although total fuel loads varied considerably from one
sample date to the next, there was a general trend of higher fuel
loads in the late spring and early summer than in fall and winter

(Fig. 3). Weather covariates and soil moisture were poor pre-
dictors of total fine fuel loads (Table 2). The best model for total
fine fuels contained only the site factor (P, 0.01), with

both Dillingham Ranch (P, 0.01) and Schofield Barracks
(P, 0.01) having significantly more total fine fuels than
Yokohama (Fig. 3, Table 2).

Soil moisture (SM) (P¼ 0.01), Temp (P, 0.01), RH
(P, 0.01) and the Temp�RH interaction (P, 0.01), were all
significant predictors of the variability in live fine fuel loads
over the sampled year (Table 2). In a model including these

weather covariates, increases in Temp (model estimate¼ 2.94)
and RH (estimate¼ 1.91) increased live fine fuel loads, whereas
increases in SM (estimate¼�0.11) and in the Temp�RH

interaction (estimate¼�0.06) resulted in small decreases in
live fine fuels. Live fine fuel loads varied by site (P, 0.01), with
lower fuels at Yokohama (1.28–6.30Mg ha�1) than either

DillinghamRanch (2.12–14.80Mg ha�1;P, 0.01) or Schofield
Barracks (3.20–15.16Mg ha�1; P, 0.01).

Weather and soil moisture covariates were not strong

predictors of the variability in dead fine fuels (Table 2).
Differences based on study site were marginally significant
(P¼ 0.06, Table 2), with more dead fine fuel at Dillingham
Ranch (8.19–28.61Mg ha�1; P¼ 0.03) and Schofield

Barracks (8.19–29.39Mg ha�1; P¼ 0.04) than at Yokohama
(9.01–23.09Mg ha�1).

Moisture content of fine fuels was variable over time, with

large changes seen between sampling weeks (Figs 4, 5). Weather
covariates and soil moisture were good predictors of the
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measured changes in live and dead fuel moistures over the year
sampled. The best model for live fuel moisture (LFM) included
SM (estimate¼ 2.90; P, 0.01), Temp (estimate¼�39.06;

P, 0.01), RH (estimate¼�15.63;P¼ 0.06) and the Temp�RH
interaction (estimate¼ 0.63;P¼ 0.03, Table 2), and there was no
evidence for additional variability in the data being explained by

site differences (P¼ 0.23). Live fuel moisture was generally
higher in the winter and spring than in the summer and fall, but
rapid changes were often seen between sampling dates with
changes in weather events (e.g. precipitation).

Dead fine fuel moisture was similarly lowest in the summer
and fall across all three sites, with higher moistures and greater

variability measured in the winter and spring. The model that
best explained the variability seen in dead fuel moisture includ-
ed SM (estimate¼ 0.39; P, 0.01), Temp (estimate¼ 4.24;

P, 0.01), RH (estimate¼ 2.98; P, 0.01), Precip (estimate
1.56; P¼ 0.02), Temp�RH (estimate¼�0.09; P, 0.01) and
Temp�Precip (estimate¼�0.05; P¼ 0.02, Table 2), but not

sample site (P¼ 0.10).

Fine-scale temporal variability in guinea grass fuels

At a finer temporal scale (three sampling dates per week for 4

weeks), fuel moisture could not be accurately predicted using
selected weather covariates. Although there appeared to be a
trend of increasing fuel moisture following rainfall events

(Fig. 5), predictive relationships between weather variables and
fuel moisture were not evident with the data collected. Live fuel
moisture was lowest (115%) on the first sampling date. After a

week with multiple rainfall events, live fuel moisture increased
to .300% and remained high (between 195–304%) for the
duration of the sampling period. Relationships between ante-
cedent weather and change in live fuel moisture were quite

weak. There was a suggestive correlation between RH and live
fuel moisture (R2¼ 0.63, P¼ 0.05). Models generated using
stepwise linear regression explained little of the variability in the

data and none were statistically significant. The best model
(DLFM¼�382 – 4.35Windþ 9.20RH;P¼ 0.11) included only
7-day average maximum wind speed (kph) and 7-day average

minimum relative humidity (%) as predictor variables, with no
significant interactions, but this model was not statistically
significant; in addition, although this model explained nearly

half the variation in the response variable (R2¼ 47.3%), its
predicted R2 (IBM SPSS, Inc., Chicago, IL) was much lower
(R2

pred¼ 14.3%), suggesting that even this simple model was
overfitting the data.

Dead fuel moisture (DFM) was much less variable than live
fuel moisture, ranging from 14.5 to 27.0% throughout the
sampling period. Relative humidity (7-day average minimum)

was again the onlyweather variable significantly correlatedwith
change in dead fuel moisture between sampling dates
(R2¼ 0.70, P¼ 0.04). Models generated using stepwise linear

regression explained little of the variability in the data and had
no predictive power. The best model (DDFM¼�141þ 1.26
Temp þ 2.07RH – 0.279Precip: R2¼ 74.5%; R2

pred¼ 0.0%;
P¼ 0.11) included only 7-day average maximum temperature

(8C), 7-day average minimum relative humidity (%) and 7-day
antecedent precipitation (mm) as predictor variables, with no
significant interactions.

Discussion

The distribution and arrangement of fuel loads profoundly affect
fire behaviour across a landscape (Rothermel 1972; Pyne et al.
1996). Invasive grasses in the tropics alter fuel loads, typically

by providing a continuous, highly flammable fuel source that
can perpetuate a cycle of fire and further grass invasion
(D’Antonio and Vitousek 1992; Brooks et al. 2004). A better

understanding of the spatial and temporal variability in fuel
loads and moistures associated with invasive grasses is, there-
fore, integral to fire prevention and management in these
ecosystems.
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Previous work on guinea grass fuel loads has shown that

there is great variability in this fuel type but the spatial and
temporal scope of these studies has been limited (Beavers et al.
1999; Beavers 2001; Wright et al. 2002; Weise et al. 2005). In
Brazil, pronounced temporal variability in guinea grass fine fuel

loads has been documented, with live fine fuel loads ranging
from,1 to 12.5Mg ha�1 and dead fine fuel loads ranging from
2.5 to 19.0Mg ha�1(Portela et al. 2009). Similar variability was

reported over a 7-year study period in Puerto Rico, where total
fine fuel loads ranged from 3.6 to 14.3Mg ha�1 (Francis and
Parrotta 2006).

Our results for Hawaii show even greater variability in
guinea grass fuel loads, but generally support previously pub-
lished estimates. Importantly, total fuel loads in mature guinea
grass stands varied remarkably, both spatially and temporally,

over a relatively small island landscape. Our data, like previous

work, show some evidence for seasonal patterns in fuel loads
(Table 2), but fluctuations over shorter time periods driven by
weather better characterise this landscape. The differing tempo-
ral patterns observed between sites in this study may be due to

small-scale weather patterns (i.e. precipitation events, solar
radiation, wind speed and direction), as well as land use and
management histories (e.g. military training v. state park). More

dead fuel loads than livewere consistently observed in this study
across all sites and sampling periods, translating to landscapes
with high fire risk year-round. In tropical grassland fuel types,

fire will no longer spread when dead fuel moisture is above a
threshold of ,30–40% moisture content (Beavers 2001; Scott
and Burgan 2005). Dead fuel moisture in all sampled sites was
well below this threshold at many sampling periods (Fig. 4),

Table 2. Statistical results of separate repeated-measures mixed model analyses for intra-annual temporal variability

models

Models were from the REML estimation method using SPSS:MIXED; Yokohama set as reference site. Variables in this table

are: Temp, 7-day averagemaximum air temperature; RH, 7-day averageminimum relative humidity; SM, soil moisture content;

Precip, 7-day antecedent precipitation

Model Estimate SE d.f. t-statistic P-value

Parameter

Total fine fuel biomass (Mgha�1)

Intercept 18.65 1.85 16.17 10.09 0.000

Site

Dillingham 9.68 2.60 15.83 3.72 0.002

Schofield 7.89 2.66 16.92 2.97 0.009

Yokohama 0.00A 0.00A – – –

Live fine fuel biomass (Mg ha�1)

Intercept �84.02 28.75 38.62 �2.92 0.010

Site

Dillingham 5.15 1.04 40.85 4.96 0.000

Schofield 3.07 0.86 26.93 3.56 0.001

Yokohama 0.00A 0.00A . . .

Temp 2.94 0.96 36.82 3.06 0.004

RH 1.91 0.54 37.65 3.52 0.001

SM �0.11 0.04 74.89 �2.62 0.011

Temp�RH �0.06 0.02 35.70 �3.45 0.001

Dead fine fuel biomass (Mg ha�1)

Intercept 14.65 1.32 14.64 11.10 0.000

Site

Dillingham 4.37 1.86 14.37 2.35 0.034

Schofield 4.33 1.89 15.31 2.29 0.037

Yokohama 0.00A 0.00A – – –

Live fine fuel moisture (%)

Intercept 1119.87 415.38 46.60 2.70 0.010

Temp �39.06 14.03 43.35 �2.78 0.008

RH �15.63 8.00 46.39 �1.95 0.057

SM 2.90 0.44 76.05 6.59 0.000

Temp�RH 0.63 0.28 43.15 2.29 0.027

Dead fine fuel moisture (%)

Intercept �136.54 39.61 44.88 �3.45 0.001

Temp 4.24 1.30 44.00 3.27 0.002

RH 2.98 0.78 46.85 3.81 0.000

SM 0.39 0.06 47.63 7.03 0.000

Precip 1.56 0.65 74.96 2.40 0.019

Temp�RH �0.09 0.03 45.71 �3.32 0.002

Temp�Precip �0.05 0.02 73.70 �2.33 0.023

AYokohama set as reference site.
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indicating that these sites have adequate fuel accumulation and
sufficiently low fuel moisture content to promote rapid fire

spread most of the year, given an ignition source.
Live fuel moisture, which is affected by both biological

processes and current and antecedent weather, also affects
potential fire behaviour on the landscape. Water is a heat sink

and must be removed from at least the surface layer of the fuel
before ignition is possible. When live fuel moisture is high,

ignition is unlikely but as live fuel moisture decreases, potential
for ignition increases (Pyne et al. 1996). Rapid increases in live
fine fuel moisture were observed in this study following precipi-
tation eventswhen relative humiditywas high, temperatureswere

low and soils were moist. Additionally, an interactive effect of
temperature and relative humidity was evident, such that fuel
moisture stayed higher when weather was cool and moist.

Prediction of fuel parameters using weather covariates was
most effective in intra-annual temporal models. Live and dead
fuel moisture had strong relationships with weather covariates

(Temp, RH, SM, Precip; Table 2). Fuel moisture is one of the
most difficult parameters to predict, but one of the most impor-
tant parameters driving fire occurrence and spread. Develop-

ment of robust, site-specific predictive models for estimating
fuelmoisture, such as that provided here, should greatly advance
capacity for modelling andmanaging fire in tropical landscapes.

Although our intra-annual models showed good predictive

capacity over the year sampled, the most valuable model would
be one that could be used on shorter time scales, giving
managers almost real-time information on fuel moisture condi-

tions. In our fine scale variability sampling, it appeared that
periods of increased fuel moisture followed precipitation events
(Fig. 5), as would be expected, but models describing this

relationship on short time scales (i.e. daily to weekly) were
not effective for prediction, perhaps due to the small sample
size. The change in live and dead fuel moisture may be a product
of many interacting factors, including current and antecedent
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weather (temperature, precipitation, wind speed and direction,
insolation, relative humidity, etc.) as well as physical and
biological processes (soil moisture, soil water holding capacity,

evapotranspiration, plant water uptake, species specific curing
rates, etc.) (Viney 1991; Viney and Catchpole 1991; Cheney
et al. 1993; Nelson 2000; Weise et al. 2005). These complex

interactions may make prediction of live and dead fuel moisture
difficult on these shorter time scales, but at longer temporal
scales (intra-annual) these relationships were more robust.

This research provides an important first step in the manage-
ment and prevention of fire in guinea grass dominated ecosys-
tems in Hawaii by describing the variability of fuel loads over
both space and time. The conversion of native, lowland dry

ecosystems to invasive-dominated, fire-prone grass ecosystems
has increased the demand on fire management agencies. Impor-
tant future work in guinea grass ecosystems in Hawaii, other

island ecosystems and throughout the tropics will be the incor-
poration of the data presented here into fire predictionmodelling
tools, such as fire behaviour and spatial models. Additional data

on fuel height, arrangement and continuity will be important for
scaling these models across larger spatial scales. With this
knowledge, managers will be better able to assess potential fire

risk and consider management strategies in guinea grass domi-
nated ecosystems in Hawaii and throughout the tropics.
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