Kona Coffee Root-knot Nematodes: Disease Symptoms and Management

Dr. Scot Nelson

University of Hawaii at Manoa
College of Tropical Agriculture and Human Resources

Cooperative Extension Service
Hawaii island

Coffee Talk
June 13, 2007
Kainaliu, Hawaii
Coffee trees around the world are attacked by at least 18 species of root-knot nematodes (*Meloidogyne* spp.).

Meloidogyne exigua and *Meloidogyne incognita* are the most common species found in coffee roots.

In Hawaii there are two species attacking coffee: *Meloidogyne konaensis* (Kona) and *Meloidogyne hapla* (Maui).
Coffee decline has a fairly long history on Kona, going back probably at least to the 1960's, but the cause was not identified at the time.

In the 1990’s, some large farms had repeated re-planting problems over large acreages, having to replant the same ground every few years due to plant death.

From 1991-1994, the UH collected a new species of root-knot nematodes from Kona coffee and determined it was most likely cause of coffee decline in Kona. It was *Meloidogyne konaensis*.
By 2004, 34% of coffee plantations sampled in Kona were infested with *M. konaensis*.

The pest causes an estimated 20-25% overall reduction in coffee yields and results in many indirect business losses as well (water, fertilizer, labor, re-planting costs, loss of sales).

We do not know how this nematode came to Kona or how it evolved, but we suspect it came to Hawaii as early as the 19th century when coffees were introduced on a large scale to Kona.
Create and maintain a complex soil ecosystem, which has a number of effects, including:

- Better soil structure, organic matter, and nutrition
- Better soil moisture retention
- More nematode antagonists

How to do this?

- Composts and mulches (coffee pulp and cherry is good)
- Grow coffee under shade
Botanical Nematicides

Beneficial Nematodes
- *Steinernema* species

Biocontrol Bacteria
- Deny, Blue Circle (*Burkholderia cepacia*)
- Activate (*Bacillus chitinosporus*)

Biocontrol Fungi
- DiTera (*Myrothecium verrucaria*)
- MeloCon, BioAct (*Paecilomyces lilacinus*)

Chitin
- ClandoSan
- Shrimp Shell meal

Botanical Nematacide
- Nemastop (Organic extracts w/Fatty acids)
- Dragonfire (sesame oil)
- Ontrol (sesame meal)
- Nemagard (ground up sesame plant)
- Neem cake
- Armorex (sesame oil, garlic,

Producers or Distributors

<table>
<thead>
<tr>
<th>Nitron Industries, Johnny’s Seed, BioLogic, Hydro-Gardens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stine Microbial Products</td>
</tr>
<tr>
<td>Rincon Vitova</td>
</tr>
<tr>
<td>Valent USA, Peaceful Valley, Prophyta</td>
</tr>
<tr>
<td>Igene Biotech, ARBICO, Peaceful Valley</td>
</tr>
<tr>
<td>Soils Technology Corp, Poulenger USA, Poulenger USA</td>
</tr>
<tr>
<td>Natural Organic Products, Monsoon, Peaceful Valley</td>
</tr>
<tr>
<td>Soils Technology Corp</td>
</tr>
<tr>
<td>Fruit</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Apple</td>
</tr>
<tr>
<td>Pears</td>
</tr>
<tr>
<td>Asian Pear</td>
</tr>
<tr>
<td>Citrus</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grapes</td>
</tr>
<tr>
<td>Peach &</td>
</tr>
<tr>
<td>Nectarines</td>
</tr>
<tr>
<td>Plums</td>
</tr>
<tr>
<td>Apricots &</td>
</tr>
<tr>
<td>Almonds</td>
</tr>
<tr>
<td>Cherries</td>
</tr>
</tbody>
</table>
The main ways that nematodes are controlled on coffee globally are chemical and host resistance.
- Host resistance is being developed around the world.
Interspecific hybrids
Coffea canephora is resistant
Cross with _C. arabica_ to get resistant coffee varieties (breeding)
Examples: “Timor Hybrid” and “Nemaya” varieties
Or, _C. canephora_ varieties are used as rootstocks themselves, as with the “Apoata” rootstock in Brazil.
In Hawaii we have ‘Fukunaga’
Edward Fukunag started a collection of coffees at the Uh Kona Experiment Station in the 1950’s.
C. liberica var. _dewevrei_ = Fukunaga
2000 Kona Coffee Festival Cupping Contest won by C. arabica Typica ‘Progeny 502’ scion grafted onto ‘Fukunaga’
- Also C. purpurea
- HARC: doing some breeding.
Nematodes are ancient animals
NEMATODE ANATOMY

- Head
- Stylet
- Esophagus
- Mouth and lips
- Intestine
- Ovary
- Egg
- Vulva
- Anus
- Tail

- No brain
- No heart
- No lungs
Meloidogyne konaensis: the coffee root-knot nematode
How nematodes affect plants

Adequate nutrient and moisture level in soil

Nutrient deficiency symptoms (yellowing, necrosis), wilting, defoliation, & plant death due to decreased respiration and transpiration

Decreased uptake of water and nutrients; weak stems

Root galling, splitting and rotting

Nematodes attack roots
Information Resources for Coffee Nematode Decline

(1) Online image gallery of symptoms:
“Coffee Pest & Disease Image Gallery”
http://www.ctahr.hawaii.edu/nelsons

(2) Free Online Publications

Coffee decline caused by the Kona coffee root-knot nematode

Managing coffee nematode decline

(3) Video: “The Case of the Nematode Nemesis”
Coffee growers in Hawaii are able to grow their crop free from many of the world’s most serious coffee diseases because our islands are isolated from other coffee-growing areas and the diseases have not yet been introduced here. However, during the past several years a serious disease has been observed in the Kona region of the island of Hawaii. This disease has been referred to in Kona as “transplanting decline,” “replant problem,” “nutritional stress,” and “Kona wilt.” It is characterized in coffee plantations by the occurrence of individual or clustered poorly growing or stunted coffee trees.

Coffee decline caused by the Kona coffee root-knot nematode

Drooping leaves, thin foliage
This stunted 3-year-old plant with a poor crop also shows leaf yellowing (chlorosis).

Yellow leaves
Nematode-infected coffee trees with good crops can decline rapidly (2-3 months). A heavy crop makes demands on the tree, causing stress that may hasten the decline.

Dead tree

Visit the UH-CTAHR web page for a free nematode decline publication.

http://www2.ctahr.hawaii.edu/oc/freepubs/
A Nematode Decline Symptom Checklist:

LEAVES
- Leaves drooping
- Leaves yellowing
- Leaves brown, falling off tree

STEM
- Stem narrow or thin
- Stem wobbly
- Plant is stunted
- Plant is easily uprooted by hand

BRANCHES
- Some branches have thin foliage
- Some branches dying back

ROOTS
- Roots are swollen, and galled
- Roots have a corky appearance
- Tap root is destroyed or non-functional
- There are few secondary or feeder roots
- Roots are discolored,
Flagging of leaves is a symptom caused by damage to roots by the root-knot nematode (*Meloidogyne konaesis*)
Infected roots are swollen and stubby

Terminal galling
Poor root systems, plants wobbly, easily uprooted

Disease is patchy in the field. 3-4 yr old plants can die

Sparse foliage, yellow
Infected roots are swollen and stubby

Normal roots are not swollen
ROOT SYMPTOMS caused by *M. konaensis*

- **INTERNAL ROT**
- **CORKY AND CRACKED**
- **KNOTS & GALLS**
“Corky” texture to root surface, cracking of tissue

Primary roots stubby & decayed, few feeder roots
How severely diseased is my field?

<table>
<thead>
<tr>
<th>Disease Severity</th>
<th>Foliar Symptoms</th>
<th>Root Symptoms</th>
<th>Notes/Field symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>No disease</td>
<td>Leaves dark green, not flagging, no dieback of branches or defoliation, thick stem diameter, plants strongly rooted (hard to wobble)</td>
<td>Extensive feeder root system, healthy tap root and feeder roots, white in color, no galls or terminal swellings visible.</td>
<td>Trees have full canopy, no areas in field are showing decline or stress.</td>
</tr>
<tr>
<td>Moderate Disease</td>
<td>Some leaf “flagging”, some leaves yellowing, some leaf necrosis, some defoliation and/or branch die back, some plants have wobbly stems and a relatively thin stem diameter, some plants stunted, flowering sparse or sporadic.</td>
<td>Galling and terminal swellings on feeder roots, some root discoloration is evident, low volume of fine “feeder” roots, there is some galling and swelling on primary roots (tap root).</td>
<td>Localized or patchy areas of declining trees in the field.</td>
</tr>
<tr>
<td>Severe Disease</td>
<td>Extensive leaf yellowing and/or severe leaf flagging, much leaf necrosis and leaf drop, branch die back, tree death, very thin stem diameter or very wobbly stems, very poor flowering, and severe plant stunting, plants easily uprooted by hand.</td>
<td>Severe galling and swelling on primary root system, tap roots and secondary roots heavily cracked and “corky” in appearance, extensive root necrosis, missing or heavily damaged tap root, virtually absent feeder root system</td>
<td>Extensive areas of the farm have severely diseased and declining trees, there are localized areas of extensive plant death, almost every tree observed to have drooping, yellow and necrotic leaves</td>
</tr>
</tbody>
</table>
Management Options for Kona Coffee Decline

- Fallow severely infested fields before replanting
- Replant with nematode-free seedlings
- Eliminate weeds and alternate hosts for nematodes
- **Replant with nematode-resistant rootstocks (grafting)**
- Incorporate/add organic matter into soil
- Avoid spreading nematodes to new fields
- Remove *pula-pulas*, do not replant with infected *pula-pulas*
- Avoid over- and under-management of farm (e.g., irrigation, fertilization)
- Know your farm (conduct sampling, correct diagnosis)
- Minimize plant stress due to other factors
- Educate and train farm personnel (e.g., sanitation)

Grafted plant (‘Fukunaga’ rootstock)
Grafting with ‘Fukunaga’ rootstock

Coffea dewevrei (*C. liberica* cv. *dewevrei*)

- Resistant to Kona coffee root-knot
- Cupping quality retained
CLEFT GRAFTING

1. **Prepare ROOTSTOCK** with a horizontal cut, discard foliage.
2. **Cut a cleft into the rootstock with an angled slicing motion.**
3. **Join the SCION wedge with the ROOTSTOCK cleft and seal with clip or tape.**
4. **Prepare SCION** with a horizontal cut, discard roots.
5. **Trim the cut edge of the SCION to form a wedge.**

ROOTSTOCK

SCION (‘FUKUNAGA’)

GRAFTED PLANT
Approach grafting method

=Graft union=

Guatemalan scion

‘Fukunaga’ rootstock

Grafted

Not grafted
Tubes 8” long X 2” wide

Deep rooting zone is recommended
Humid chamber for grafted seedlings

Grafted seedlings…don’t forget to fertilize!
GOOD NURSERY PRACTICES FOR COFFEE

1) Grow seedlings on an elevated bench and over covered ground to avoid soilborne nematodes that may splash or be carried to seedlings.

2) Try to isolate your nursery from your production fields and place the nursery up-slope from nematode-infested fields if possible, and out of the path of water which may drain from nematode-infested fields.
GOOD NURSERY PRACTICES FOR COFFEE

3) Start and grow coffee seedlings in **sterile media** when possible, and never in untreated field soil.

4) Grow grafted coffee seedlings in **as large a container** as is affordable (e.g., paper sleeves, plastic containers), and plant seedlings that are at least 9 months to 1 year of age. Larger, vigorous plants are better able to tolerate nematode infections in the field, so try to plant as large a seedling as you can.
Do not use pula-pula seedlings, avoid their use at all costs, especially if they come from a nematode-infested farm.

Do not use untreated field soil to fill bags or containers for growing coffee seedlings.

Do not introduce nematodes into your nursery on your tools, equipment and boots, etc.

When watering, try to minimize splashing of water from ground to plants. Avoid planting coffee seedlings in nursery beds that contain untreated field soil.
Acknowledgements

Hawaii Coffee Growers and Associations

Hawaii Department of Agriculture and Plant Quarantine

USDA
Kona Experiment Station Staff

Cooperative Extension Service

Hawaii Agricultural Research Center

Numerous UH faculty and staff

Dr. Donald Schmitt and Mario Serracin
Mahalo!

For more information:

DR. SCOT NELSON
University of Hawaii at Manoa
Cooperative Extension Service
875 Komohana Street
Hilo, HI 96720

tel: 808-981-8265
email: snelson@hawaii.edu