Position—being in the right place—is important. That's especially true of CTAHR’s research. Sometimes our discoveries bring us to the forefront, but often we're behind the scenes, and that's good, too. We're making a difference wherever we are.

One of this quarter's Impact Statements is about the recent release of Mite Away Quick Strip™, a new weapon in the battle against the varroa mite, a honeybee pest. It was the Department of Agriculture that licensed the miticide, and it's Hawai'i's beekeepers who produce the sweet honey in their thriving hives. But it was the research of Mark Wright, Ethel Villalobos, and the rest of CTAHR's Honeybee Project that generated the information that got the registration through so quickly. In the background, maybe—but necessary.

Or look at a stream or river. What do you see? Chances are, it's the water flowing along that catches your eye. What's growing on its edges doesn't tend to be our focus, but it deserves investigation. Buffer zones of vegetation keep sediment and pathogens out of the water and keep the water clean and healthy. Primary Investigator Ali Fares and his team of researchers have discovered that variable-width riparian boundaries of native plants are just as effective as wider barriers that take more land from farmers, just as effective as barriers that use imported, invasive species. On the margins, yes—but necessary.

Finally, the statement on the Human Nutrition, Food and Animal Sciences (HNFAS) Dietetics program points out that it's "not one of CTAHR's more commonly known academic programs." But the program, under the direction of Anne Shovic, exceeds all the benchmarks for its upcoming accreditation—some by a wide margin. And for over 20 years it's been training Registered Dietitians to work in varied capacities throughout the Islands and beyond, keeping our people healthy through good nutrition. Not often in the spotlight—but necessary.

While we like center stage as much as anyone, the faculty, staff, and students of CTAHR also know that what goes on behind the scenes, or at the margins, is just as important—just as necessary.

Aloha,

Sylvia Yuen
Interim Dean and Director of CTAHR

www.ctahr.hawaii.edu
Position—being in the right place—is important. That's especially true of CTAHR’s research. Sometimes our discoveries bring us to the forefront, but often we’re behind the scenes, and that’s good, too. We’re making a difference wherever we are.

One of this quarter’s Impact Statements is about the recent release of Mite Away Quick Strip™, a new weapon in the battle against the varroa mite, a honeybee pest. It was the Department of Agriculture that licensed the miticide, and it’s Hawai’i’s beekeepers who produce the sweet honey in their thriving hives. But it was the research of Mark Wright, Ethel Villalobos, and the rest of CTAHR’s Honeybee Project that generated the information that got the registration through so quickly. In the background, maybe—but necessary.

Or look at a stream or river. What do you see? Chances are, it’s the water flowing along that catches your eye. What’s growing on its edges doesn’t tend to be our focus, but it deserves investigation. Buffer zones of vegetation keep sediment and pathogens out of the water and keep the water clean and healthy. Primary Investigator Ali Fares and his team of researchers have discovered that variable-width riparian boundaries of native plants are just as effective as wider barriers that take more land from farmers, just as effective as barriers that use imported, invasive species. On the margins, yes—but necessary.

Finally, the statement on the Human Nutrition, Food and Animal Sciences (HNFAS) Dietetics program points out that it’s “not one of CTAHR’s more commonly known academic programs.” But the program, under the direction of Anne Shovic, exceeds all the benchmarks for its upcoming accreditation—some by a wide margin. And for over 20 years it’s been training Registered Dietitians to work in varied capacities throughout the Islands and beyond, keeping our people healthy through good nutrition. Not often in the spotlight—but necessary.

While we like center stage as much as anyone, the faculty, staff, and students of CTAHR also know that what goes on behind the scenes, or at the margins, is just as important—just as necessary.

Aloha,

Sylvia Yuen
Interim Dean/Director
www.ctahr.hawaii.edu
Bee Happy!

In April 2007 the beekeeping community of Hawai‘i was appalled to discover that the varroa mite (Varroa destructor), a devastating honeybee parasite, was widespread on O‘ahu. A year later the mite invaded the Big Island. This February, however, research conducted by CTAHR’s Honeybee Project helped bring good news to the local beekeepers and farmers: A new formic acid-based miticide, Mite Away Quick Strip™ (MAQS), has now been approved by the HDOA. CTAHR’s bee team, led by Dr. Ethel Villalobos and Dr. Mark Wright, worked in collaboration with local beekeepers, the manufacturer, and the HDOA to evaluate the efficacy of this new bio-pesticide and to assess the impact of the treatment on honeybee colonies.

Varroa destructor is an external parasitic mite that feeds on the hemolymph (akin to blood) of adult bees and transmits pathogens, including deadly bee viruses. The field research conducted by the Honeybee Project team, which also includes Scott Nikaido, Tyler Ito, and Jane Tavera, provided the data needed for a local needs registration of MAQS, which provides effective mite control, does not leave chemical residues in the hive or interfere with honey collection, and is effective mite control, by the Honeybee Project team, which also includes Scott Nikaido, Tyler Ito, and Jane Tavera, provided the data needed for a local needs registration of MAQS, which provides effective mite control.

Since the mite arrived in Europe and the continental US, many control methods have been developed and tested. Synthetic miticides decrease in effectiveness over time as mites develop resistance, and their residues may have detrimental side effects on bee health. The UH Honeybee team and Hawai‘i’s beekeepers are now leading the way nationally in the use of non-synthetic chemicals to control the destructive mite. The approval of MAQS will help safeguard the health of Hawai‘i’s honeybee colonies and contribute to the sustainability of food production in the Islands.

For more information about MAQS and the UH Honeybee Project, please visit our Web site at www.ctahr.hawaii.edu/wrightm/Honey_Bee_Home.html

RBs: Growing Green by the Stream

A river flows to the sea, they say, but what flows into the river? When it rains, fertile top soil is lost, and everything from sediment to fertilizers and pesticides to soil pathogens get washed in. Then the streams silt up, pesticides and suspended sediments threaten stream micro-organisms and aquatic life. These negative impacts could extend into the receiving ocean.

To stop at least minimize pollution of water resources, riparian buffer zones are used. These areas of special plantations that capture the soil and nutrients and make use of them before they wash into the water. Constant-width riparian buffers (CWRBs) are effective in reducing sediment, pathogens, and nutrient loads from agricultural catchments into surface and groundwater resources. However, CWRBs use more valuable agricultural land than needed. Variable riparian buffers, known also as precision riparian buffers (PRBs), can be as effective as CWRBs but only use around 20% of the land along the stream banks. PRBs have not been evaluated in Hawai‘i, though, until now. Researchers Ali Fares, Carl Breman, Aly El-Kadi, and Catherine Chan-Halbrendt teamed up with other researchers and graduate students to evaluate the effectiveness of PRBs as soil-conservation and pollution-prevention management practices in Hawai‘i environments, and to optimize their configuration. They tested the erosion control ability of two native plants, Pilipili grass and Ahuawa sedge, as well as invasive Guaina grass, at research sites on the Lornard (Pioneer Hybrid, Wahiawa) and Windward (Kaua‘a Ranch) sides of O‘ahu. They tested surface runoff entering and leaving these buffers for major water-quality indicators. Preliminary results show that Pilipili grass and Ahuawa significantly reduced the sediment transported to streams by more than 50% at Pioneer Hybrid, Wahiawa site. The native and invasive plant species were equally efficient in removing sediment, but PRBs using native species will help biodiversity. A cost-benefit economical analysis found that PRBs are economically viable.

Researchers Ali Fares, Carl Breman, Aly El-Kadi, and Catherine Chan-Halbrendt teamed up with other researchers and graduate students to evaluate the effectiveness of PRBs as soil-conservation and pollution-prevention management practices in Hawai‘i environments, and to optimize their configuration. They tested the erosion control ability of two native plants, Pilipili grass and Ahuawa sedge, as well as invasive Guaina grass, at research sites on the Lornard (Pioneer Hybrid, Wahiawa) and Windward (Kaua‘a Ranch) sides of O‘ahu. They tested surface runoff entering and leaving these buffers for major water-quality indicators. Preliminary results show that Pilipili grass and Ahuawa significantly reduced the sediment transported to streams by more than 50% at Pioneer Hybrid, Wahiawa site.

CWA Watershed Hydrology researchers Farhat Abbas, Ali Fares, and Amjad Ahmad survey and georeference the landscape, the first step in designing a PRB system at the Punaerua site. Authors researchers collect runoff samples resulting from a simulated rainfall.

This rigorous accredited program, preparing UH students to become Registered Dietitians (RD) Students earn baccalaureate degrees in Food Science and Human Nutrition, through the Department of Human Nutrition, Food and Animal Sciences (HNFAS). Dietitians work as part of health care teams assessing the nutritional status of patients and providing medical nutrition therapy. Others are important components of public health, imposing targeted populations’ nutritional well-being. Dietitians also manage food service operations in institutional and hospitality industries. They offer education and outreach, like HNFSAreas faculty members Naomie Kauhunia, Rachel Novotny, Corilee Watters, and Julia Zen. The program has close ties to the Hawaii Dietetic Association and is guided by a Dietetics Advisory Council made up of professional dietitians.

CTAHR strives to meet the growing demand for dietitians.

The U.S. Bureau of Labor Statistics projects a 9 percent growth in demand for dietitians over the next decade.

The Didactic Program in Dietetics is not one of CTAHR’s more commonly known academic programs. Yet for over 20 years, Anne Shovic has directed this rigorous accredited program, preparing UH students to become Registered Dietitians (RD). Students earn baccalaureate degrees in Food Science and Human Nutrition, through the Department of Human Nutrition, Food and Animal Sciences (HNFAS). Dietitians work as part of health care teams assessing the nutritional status of patients and providing medical nutrition therapy. Others are important components of public health, imposing targeted populations’ nutritional well-being. Dietitians also manage food service operations in institutional and hospitality industries. They offer education and outreach, like HNFSAreas faculty members Naomie Kauhunia, Rachel Novotny, Corilee Watters, and Julia Zen. The program has close ties to the Hawaii Dietetic Association and is guided by a Dietetics Advisory Council made up of professional dietitians.

CTAHR strives to meet the growing demand for dietitians.

The U.S. Bureau of Labor Statistics projects a 9 percent growth in demand for dietitians over the next decade.

The Didactic Program in Dietetics must meet stringent standards established by the American Dietetic Association’s Commission on Accreditation for Dietetics Education. In April 2011, the program will seek re-accreditation. Here are some of the standards the program must meet:

• Over a 5-year period, 90% of graduates will complete the program within 3 years. In the HNFSAreas program, between 2006 and 2011, 96% of the students completed the program.
• 60% of the graduates will apply to a supervised practice program, or internship, the year they complete the program. Here, 62% applied to internships. In addition, 10% of the students were accepted into nationwide health-related institutions of higher learning such as medical, pharmacy, and nursing schools, departments of health and graduate schools.
• Graduated students must achieve a pass rate of 80% or above for first-time test takers of the RD examination. Here, over 85% pass.
• Within 6 months of graduating from a dietetics internship, 80% of the program graduates residing in Hawai‘i must have obtained employment related to nutrition.
• 100% were employed, most within 2 months.

The dietitians do good work throughout Hawai‘i and the American Territories can thank Anne Shovic and the faculty of the FSIN program for their success—and so can those they help.

More information on the Dietetics Program can be found at www.ctahr.hawaii.edu/hnfas/dregres/undergrad/dietetics.html
Bee Happy!

In April 2007 the beekeeping community of Hawai‘i was appalled to discover that the varroa mite (Boxa destructor), a devastating honeybee parasite, was widespread on O‘ahu. A year later the mite invaded the Big Island. This February, however, research conducted by CTAHR’s Honeybee Project helped bring good news to the local beekeepers and farmers: a new formic acid-based miticide, Mite Away Quick Strain® (MAQS), which provides effective mite control, has now been approved by the HDOA. CTAHR’s bee team, led by Dr. Ethel Villalobos and Dr. Mark Wright, worked in collaboration with local beekeepers, the manufacturer, and the HDOA to evaluate the efficacy of this new bio-pesticide and to assess the impact of the treatment on honeybee colonies.

Unfortunately, Varroa destructor is an external parasitic mite that feeds on the hemolymph (akin to blood) of adult bees and transmits pathogens, including deadly bee viruses. The varroa mite, (Varroa destructor), a devastating honeybee parasite, was widespread on O‘ahu. A year later the mite invaded the Big Island. This February, however, research conducted by CTAHR’s Honeybee Project helped bring good news to the local beekeepers and farmers: a new formic acid-based miticide, Mite Away Quick Strain® (MAQS), which provides effective mite control, has now been approved by the HDOA. CTAHR’s bee team, led by Dr. Ethel Villalobos and Dr. Mark Wright, worked in collaboration with local beekeepers, the manufacturer, and the HDOA to evaluate the efficacy of this new bio-pesticide and to assess the impact of the treatment on honeybee colonies.

RBs: Growing Green by the Stream

As rivers flow to the sea, they say, but what flows into the rivers? When it rains, fertile top soil is lost, and everything from sediment to fertilizers and pesticides to soil pathogens get washed in. Then the streams silt up, pesticides and suspended sediments threaten stream micro-organisms and aquatic life. These negative impacts could extend into the receiving ocean.

To stop at least minimize pollution of water resources, riparian buffer zones are used. These are areas of special vegetation that capture the soil and nutrients and make use of them before they wash into the water. Constant-width riparian buffers (CWRBs) are effective in reducing sediment, pathogens, and nutrients loads from agricultural catchments into surface and groundwater resources. However, CWRBs use more valuable agricultural land than needed. Variable riparian buffers, known also as precision riparian buffers (PRBs), can be as effective as CWRBs but only use around 20% of the land along the stream banks. PRBs have not been evaluated in Hawai‘i, though, until now. Researchers Ali Fares, Carl Brennen, Aly El-Kadi, and Catherine Chan-Hallbrecht teamed up with other researchers and graduate students to evaluate the effectiveness of PRBs as soil-conservation and pollution-prevention management practices in Hawai‘i’s environment and to optimize their configuration. They tested the erosion control ability of two native plants, Pili grass and Ahuawa sedge, as well as invasive Guinea grass, at research sites on the Lernoud (Pioneer Hybrid, Waialua) and Windward (Kuakia Raich) sides of O‘ahu. They tested surface runoff entering and leaving these buffers for major water-quality indicators.

Preliminary results show that Pili grass and Ahuawa significantly reduced the sediment transported to streams by more than 50% at Pioneer Hybrid, Waialua site. The native and invasive plant species were equally efficient in removing sediment, but PRBs using native species will help biodiversity. A cost-benefit economical analysis found that PRBs are economically viable. The largest cost is the agricultural revenue farmers won’t get from the land used for the buffers, but the reduced erosion and improved water quality make up for that. The PRBs will be conducting several outreach activities to convince more farmers to consider adopting these PRBs—and to protect surface water flowing to the sea.

Health Begins on the Plate

The Didactic Program in Dietetics is not one of CTAHR’s more commonly known academic programs. Yet for over 20 years, Anne Shovic has directed this rigorous accredited program, preparing UH students to become Registered Dietitians (RD). Students earn baccalaureate degrees in Food Science and Human Nutrition, through the Department of Human Nutrition, Food and Animal Sciences (HNFAS).

Dietitians work as part of health care teams assessing the nutritional status of patients and providing medical nutrition therapy. Others are important components of public health, imposing targeted populations’ nutritional well-being. Dietitians also manage food service operations in institutional and hospitality industries. They offer education and outreach, like HNFAS faculty members Naomi Kauhunin, Rachel Novotny, Corilee Watters, and Julia Zor. The program has close ties to the Hawai‘i Dietetic Association and is guided by a Dietetics Advisory Council made up of professional dietitians. CTAHR strives to meet the growing demand for dietitians. The U.S. Bureau of Labor Statistics projects a 9 percent growth in demand for dietitians over the next decade.

HNFAS Didactic Program in Dietetics must meet stringent standards established by the American Dietetic Association’s Commission on Accreditation for Dietetics Education. In April 2011, the program will seek re-accreditation. Here are some of the standards the program must meet:

• Over a 5-year period, 90% of enrolled students will complete the program within 3 years. In the HNFAS program, between 2006 and 2011, 96% of the students completed the program.
• 60% of the graduates will apply to a supervised practice program, or internship, the year they complete the program. Here, 62% applied to internships. In addition, 106% of the students were accepted into nationwide health-related institutions of higher learning such as medical, pharmacy, and nursing schools, departments of health and graduate schools.
• Graduated students must achieve a pass rate of 80% or above for first-time test takers of the RD examination. Here, over 85% pass.
• Within 6 months of graduating from a dietetics internship, 80% of the program graduates residing in Hawai‘i must have obtained employment related to nutrition. Here, 100% were employed, most within 2 months.

Dietitians do good work throughout Hawai‘i and the American Territories can thank Anne Shovic and the faculty of the FSHN program for their success—and so can those they help. More information on the Dietetics Program can be found at www.ctahr.hawaii.edu/hnfas/dregues/undergrad/dietetics.html
Bee Happy!

In April 2007 the beekeeping community of Hawai‘i was appalled to discover that the varroa mite (Varroa destructor), a devastating honeybee parasite, was widespread on O‘ahu. A year later the mite invaded the Big Island. This February, however, research conducted by CTAHR’s Honeybee Project helped bring good news to local beekeepers and farmers: A new formic acid-based miticide, Mite Away Quick Strm℠ (MAQS), has now been approved by the HDOA. CTAHR’s bee team, led by Dr. Mark Wright, worked in collaboration with local beekeepers, the manufacturer, and the HDOA to evaluate the efficacy of this new bio-pesticide and to assess the impact of the treatment on honeybee colonies.

Various destructor is an external parasitic mite that feeds on the hemolymph (akin to blood) of adult bees and transmits pathogens, including deadly bee viruses. The field research conducted by the Honeybee Project team, which also includes Scott Nikaido, Tyler Ito, and Jane Taravoo, provided the data needed for a local needs registration of MAQS, which provides effective mite control, does not leave chemical residues in the hive or interfere with honey collection, and is effective mite control. The UH Honeybee team and Hawai‘i’s beekeepers are now leading the way nationally in the use of non-synthetic chemicals to control the destructive mite. The approval of MAQS will help safeguard the health of Hawai‘i’s honeybee colonies and honey production.

RBs: Growing Green by the Stream

A river flows to the sea, they say, but what flows into the rivers? When it rains, fertile top soil is lost, and everything from sediment to fertilizers and pesticides to soil pathogens get washed in. Then the streams silt up, pesticides and suspended sediments threaten stream micro-organisms and aquatic life. These negative impacts could extend into the receiving ocean. To stop at least minimize pollution of water resources, riparian buffer zones are used. These areas of special plantings that capture the soil and nutrients and make use of them before they wash into the water. Constant-width riparian buffers (CWRBs) are effective in reducing sediment, pathogens, and nutrient loads from agricultural catchments into surface- and groundwater resources. However, CWRBs use more valuable agricultural land than needed. Variable riparian buffers, known also as precision riparian buffers (PRBs), can be as effective as CWRBs but only use around 20% of the land along the stream banks. PRBs have not been evaluated in Hawai‘i, though, until now. Researchers Ali Fares, Carl Bremsen, Aly El-Kadi, and Catherine Chan-Halbrendt teamed up with other researchers and graduate students to evaluate the effectiveness of PRBs as soil- and water-quality management practices in Hawai‘i’s environment, and to optimize their configuration. They tested the erosion control ability of two native plants, Pili grass and Ahuawa sedge, as well as invasive Guinea grass, at research sites on the Leeward (Pioneer Hybrid, Waialua) and Windward (Kaaawa Ranch) sides of O‘ahu. They tested surface runoff entering and leaving these buffers for major water-quality indicators. Preliminary results show that Pili grass and Ahuawa significantly reduced the sediment transported to streams by more than 50% at Pioneer Hybrid, Waialua site. The native and invasive plant species were equally efficient in removing sediment, but PRBs using native species will help biodiversity. A cost-benefit economical analysis found that PRBs are economically viable: The largest cost is the agricultural revenue farmers won’t use of them before they wash into the water. Constant-width riparian buffers (CWRBs) are effective in reducing sediment, pathogens, and nutrient loads from agricultural catchments into surface- and groundwater resources. However, CWRBs use more valuable agricultural land than needed. Variable riparian buffers, known also as precision riparian buffers (PRBs), can be as effective as CWRBs but only use around 20% of the land along the stream banks. PRBs have not been evaluated in Hawai‘i, though, until now. Researchers Ali Fares, Carl Bremsen, Aly El-Kadi, and Catherine Chan-Halbrendt teamed up with other researchers and graduate students to evaluate the effectiveness of PRBs as soil- and water-quality management practices in Hawai‘i’s environment, and to optimize their configuration. They tested the erosion control ability of two native plants, Pili grass and Ahuawa sedge, as well as invasive Guinea grass, at research sites on the Leeward (Pioneer Hybrid, Waialua) and Windward (Kaaawa Ranch) sides of O‘ahu. They tested surface runoff entering and leaving these buffers for major water-quality indicators. Preliminary results show that Pili grass and Ahuawa significantly reduced the sediment transported to streams by more than 50% at Pioneer Hybrid, Waialua site. The native and invasive plant species were equally efficient in removing sediment, but PRBs using native species will help biodiversity. A cost-benefit economical analysis found that PRBs are economically viable: The largest cost is the agricultural revenue farmers won’t get from the land used for the buffers, but the reduced erosion and improved water quality make up for that. The PIs will be conducting several outreach activities to convince more farmers to consider adopting these PRBs—and to protect surface water flowing to the sea.

Health Begins on the Plate

The Didactic Program in Dietetics is not one of CTAHR’s more commonly known academic programs. Yet for over 20 years, Anne Shovic has directed this rigorous accredited program, preparing UH students to become Registered Dietitians (RD). Students earn baccalaureate degrees in Food Science and Human Nutrition, through the Department of Human Nutrition, Food and Animal Sciences (HNFAS).

Dietitians work as part of health care teams assessing the nutritional status of patients and providing medical nutrition therapy. Others are important components of public health, improving targeted populations’ nutritional well-being. Dietitians also manage food service operations in institutional and hospitality industries. They offer education and outreach, like HNFAS faculty members Naomi Kanohi, Rachel Novotny, Corilee Watters, and Julia Zeit. The program has close ties to the Hawai‘i Dietetic Association and is guided by a Dietetics Advisory Council made up of professional dietitians.

CTAHR strives to meet the growing demand for dietitians. The U.S. Bureau of Labor Statistics projects a 9 percent growth in demand for dietitians over the next decade.

The Didactic Program in Dietetics must meet stringent standards established by the American Dietetic Association’s Commission on Accreditation for Dietetics Education. In April 2011, the program will seek re-accreditation. Here are some of the standards the program must meet:

• Over a 5-year period, 90% of enrolled students will complete the program within 3 years. In the HNFAS program, between 2006 and 2011, 96% of the students completed the program.
• 60% of the graduates will apply to a supervised practice program, or internship, the year they complete the program. Here 62% applied to internships. In addition, 16% of the students were accepted into nationwide health-related institutions of higher learning such as medical, pharmacy, and nursing schools, departments of health and graduate schools.
• Graduated students must achieve a pass rate of 80% or above for first-time test takers of the RD examination. Here, over 85% pass.
• Within 6 months of graduating from a dietetics internship, 80% of the program graduates residing in Hawai‘i must have obtained employment related to nutrition. Here, 100% were employed, most within 2 months.

The dietitians doing good work throughout Hawai‘i and the American Territories can thank Anne Shovic and the faculty of the FSUH program for their success—and so can those they help.

More information on the Dietetics Program can be found at www.ctahr.hawaii.edu/hnfas/degrees/undergrad/dietetics.html
Position—being in the right place—is important. That’s especially true of CTAHR’s research. Sometimes our discoveries bring us to the forefront, but often we’re behind the scenes, and that’s good, too. We’re making a difference wherever we are.

One of this quarter’s Impact Statements is about the recent release of Mite Away Quick Strip™, a new weapon in the battle against the varroa mite, a honeybee pest. It was the Department of Agriculture that licensed the miticide, and it’s Hawai‘i’s beekeepers who produce the sweet honey in their thriving hives. But it was the research of Mark Wright, Ethel Villalobos, and the rest of CTAHR’s Honeybee Project that generated the information that got the registration through so quickly. In the background, maybe—but necessary.

Or look at a stream or river. What do you see? Chances are, it’s the water flowing along that catches your eye. What’s growing on its edges doesn’t tend to be our focus, but it deserves investigation. Buffer zones of vegetation keep sediment and pathogens out of the water and keep the water clean and healthy. Primary Investigator Ali Fares and his team of researchers have discovered that variable-width riparian boundaries of native plants are just as effective as wider barriers that take more land from farmers, just as effective as barriers that use imported, invasive species. On the margins, yes—but necessary.

Finally, the statement on the Human Nutrition, Food and Animal Sciences (HNFAS) Dietetics program points out that it’s “not one of CTAHR’s more commonly known academic programs.” But the program, under the direction of Anne Shovic, exceeds all the benchmarks for its upcoming accreditation—some by a wide margin. And for over 20 years it’s been training Registered Dietitians to work in varied capacities throughout the Islands and beyond, keeping our people healthy through good nutrition. Not often in the spotlight—but necessary.

While we like center stage as much as anyone, the faculty, staff, and students of CTAHR also know that what goes on behind the scenes, or at the margins, is just as important—just as necessary.

Aloha,

Sylvia Yuen
Interim Dean and Director of CTAHR

www.ctahr.hawaii.edu