Introduction to Plant Propagation

Glenn T. Sako Assistant County Extension Agent CTAHR, UHM

Purposes for Plant Propagation

- Multiply the number of a species
- Perpetuate a species
- Maintain the youthfulness of a plant

Types of Propagation

- Sexual (seed)
 - Involves floral parts of the plant
 - Union of pollen and egg
- Asexual (vegetative)
 - Regenerate part of a parent plant into a new plant
 - Genetically identical to its one parent
 - Involves stems, roots, or leaves

Seed Advantages

- Produce large number of seedlings from a single parent plant
- May store seeds for future propagation
- Breed for new varieties and hybrid vigor
- Avoid transmission of certain diseases

Seed Disadvantages

- Genetic material may not be uniform
- Cannot save seeds from hybrids
- Long time to sizable plant
 - Woody plants and shrubs
- Irritants in fleshy covering (palms, etc.)

Seed Storage

- Keep in sealed container
- Refrigerate @ 40⁰F
- Low humidity
- Viability can approach 5 years
 - Varies with species
 - Viability will decline
- Check germination % of stored seeds prior to planting

Factors that affect Germination

- Water imbibition
- Oxygen respiration takes place in all viable seeds
- Light
 - requires light: impatiens, petunias, lettuce
 - requires dark: pansy
- Temperature
 - some seeds have optimal temperatures for germination

Seedling Media Requirements

- Particle size should be fine and uniform
- Well drained
- Free of insects, disease, & weed seeds
- Low in total soluble salts
- Avoid soil from the garden
 - Heavy, not sterile

Transplanting Seedlings

- When young plants less susceptible to shock (transplant shock)
- Usually when 1st true leaves appear
- Can be left longer when grown in cell packs or individual containers
- After transplanting, wait 1-2 weeks before fertilizing at a low rate

Questions?

Asexual (Vegetative) Propagation

- Cuttings
 - Rooting a severed piece from a parent plant
- Layering
 - Rooting a stem while attached to the parent plant
- Division
 - Separation of multi-crown plants
- Grafting & Budding
 - Joining of 2 plant parts
- Tissue Culture
 - Aseptic culture of meristematic tissue

Vegetative Advantages

- Larger, fuller plant produced faster
- Genetically, same as the parent
- Only way to propagate some species
- Bypasses juvenile characteristics

Vegetative Propagation Concerns

- Time spent collecting and preparing vegetative material
- May need structures and water

Cuttings

- Many new plants from few stock plants, in a limited space
- Need structure and water
 - Can be simple
- Some plant material are difficult to root
 - Wounding
 - Rooting hormone

Tools and Materials

- Shears
- Saw (Depends on size of stock plant)
- Container (Tray, pots, sleeves, etc.)
- Media

Media

- Sterile
- Low fertility
- Well-drained
- Retains moisture
- Peat/perlite (1:1 mix)
- Vermiculite/perlite (1:1 mix)

Propagation Structures

- Simple
 - Plastic bag over a container with moist peat
- Backyard
 - Covered structure with mist system
- Large
 - Saran
 - Plastic covered
 - Mist system

Questions?

Layering

- Used on difficult to root plants
- Results in larger rooted material
- No special structures needed
- Less propagation material per plant
- Time spent to do the layering

Simple Layering

Air Layering Materials

• Sharp knife

- Sphagnum moss wet
 - May use other materials like peat
- Aluminum foil or plastic sheet
- Parent plant in good, vigorous growing condition.
 - Branch pointing upwards at 45⁰

Select a branch growing upwards at 45⁰

2 deep cuts around the branch, 1" apart

Peel off the bark

Disrupt cambium

Phloem layer withcambium starting to heal

Wet sphagnum moss

Moss on foil; cover cut

Questions?

Division

- Severing of rhizomes, tubers, & tuberous roots
- When bulblets or cormels detach naturally it is called <u>separation</u>

Grafting and Budding

- Joining of plant parts
 - fruit trees
- Utilized when other propagation methods fail
- Rootstock
 - Provides vigor for better quality
 - Disease resistance
 - Characteristics extended to grafted scion wood.
- Budding when only single bud utilized

Conditions for a Successful Graft

Scion & Rootstock

- Cambiums must be aligned with each other
- Be compatible
- Be at proper physiological stage (buds dormant)
- Graft union kept moist
 - wrapped with grafting tape, waxed, etc.

Budding

- Shield or T-Bud
 - Inverted T-Bud
- Materials
- Sharp knife
- Tape
- Melted wax

Cleft Graft: Cut into rootstock

Scion prep: Single stroke

Insert scion into rootstock

Grafting and Budding Questions?

Cloning

- Aseptic culture of meristematic tissue
 - Propagation in a sterile environment
- Mostly used in orchid industry
- Needs specialized equipment and technique
- Able to produce large numbers of plants from a single parent
- May have some genetic alteration
 - Individual plantlets

What are you propagating?

