

Outline

- Importance of Soils
- Soil Diversity on Oahu
- Soil Properties
- Diagnosis and soil testing
- Management for Health

Engineering Medium

Global Soil Regions

Soil Formation Factors

 Age Climate • Biota

Processes • Additions

Losses

Mollisols

Forming Factors

- Parent material Alluvial
- Climate Low rainfall
- Vegetation - Grassland open savanna
- Processes
- Minimal leaching
- Moderate weathering
- Soil Characteristics
- Fertile soil, high nutrient status
- Clay rich, high shrink swell potential

Vertisols

Forming Factors

- Parent material - Alluvium, coral Climate
- Low rainfall Vegetation
- Grass and scrub land Processes
- Transformation
- Moderate weathering
- Soil Characteristics
- Very fertile
- Neutral to alkaline
- Poor physical properties

3

<u>Oxisols</u>

Forming Factors

- Parent material
 Residuum (basalt lava)
 Climate
- Climate
 Moderate to high rainfall
 Vegetation
- Forest/savanna?

Processes

- High leaching
- Highly weathered
 Soil Characteristics
- Infertile soil, low nutrient status
- Acidic
- Good physical properties

<u>Ultisols</u>

Forming Factors

- Parent material
 Residuum (basalt lava)
- ClimateHigh rainfall
- Vegetation
 Forest

Processes

- High leaching
- Highly weathered
- Soil Characteristics
- Infertile soil, nutrient deficient
- Very acidic
- Good physical properties

What is Soil?

Soil Texture

Clay Properties:

Microscopic size (<0.002 mm) Extremely high surface area - water retention - chemical reactions - biological activity Clay surfaces carry charge (-/+)

Weathering of Parent Rock

Ca(Mg,Fe)Si2Os (Al,Fe)2O1 Augite

Olivine (Mg,Fe)2SiO

Chemical Weathering

Montmorillonite (AI,Mg),(Si,O10),(OH)10-12H2O

Some Important Clay Minerals

- High surface area
- High nutrient retention (cation exchange capacity, CEC) Sticky
- Non-expanding
 Variable charge
- · Low surface area Low CEC Non-sticky
- Non-expanding
- Variable charge Low surface area Very low CEC Non-sticky

Cation Exchange Capacity Editor Exchange Capacity Cet is defined as the degree to which a soil can adsorb and exchange cations $(H_{4}^{+}, K^{+}, Ca^{++}, Mg^{++}, Fe^{+-}...)$ Negative surface charge $(H_{4}^{+}, K^{+}, Ca^{++}, Mg^{++}, Fe^{+-}...)$ $(H_{4}^{+}, K^{+}, Ca^{++}, Mg^{++}, Fe^{+-}...)$

Soil Water

extension.» %437f01.gr

Soil Structure and Water Flow

Soils with strong stable aggregates have good drainage

Aggregate stability depends on clay

Oxide-rich red soils have strong aggregates with good physical properties

Mollisols Vertisols

Adverse Effects of Soil Compaction

- Reduced pore sapce
- Increased bulk density
- Root growth inhibition Lower water holding
- Lower water holding capacity
- Reduced water infiltration and percolation
- Reduced aeration and anaerobic conditions
- Increased erosion

large blocks with few cracks

subsoil compaction

Improving Drainage

- Add organic matter
 - glueing action
 - Binding by soil fungi
- Add gypsum (CaSO₄)
 - Polyvalent Ca2+ pulls negatively charged clay particles together

Soil Air

Importance of Soil Air

- In compacted and/or waterlogged soil, O₂ is present in very low concentrations creating reducing conditions
 - Gaseous loss of plant available N
 - Increase in toxic levels of Manganese in some soils
 - Fermentation and production of toxic by-products of anaerobic respiration

Soil Organic Matter is the Primary Source of Fertility in Low Activity Clay Tropical Island Soils

Organic Matter Improves Soil Physical Properties

- OM promotes clay aggregation increasing H₂O infiltration and aeration
- OM decreases soil bulk density
- OM increases soil porosity
- OM increases water retention

Organic Matter Improves Soil Chemical Properties

- OM increases nutrient availability (N cycling, P and micronutrient solubility)
- OM increases CEC (200 cmolc kg-1)
- OM buffers the soil against pH changes
- OM detoxifies Al

Organic Matter Improves Soil Biology

- OM is the food for soil organisms
- OM increases microbial diversity
- Microbial diversity ensures nutrient cycling
- Microbial diversity promotes pathogen suppression through competition

Soil OM & Root Symbioses

Mycorrhizae

Soil pH

Acid Soils high rainfall/leaching carbonic acid organic acids oxidation reactions synthetic fertilizers acid rain

Negative Impacts

P deficiency

AI toxicity (pH < 5.5)

Mn toxicity (pH < 5.5)

Alkaline S	oils
arid climates,	minilmal

micronutrient deficiencies

P deficiency high salinity

poor drainage

Soil pH Affects Nutrient Availability

Negative Effects of Soil Acidity

- Low nutrient retention (CEC)
 Nutrient deficiencies
 - P deficiency
 P Fixation

- Manganese and aluminum toxicities
- Require liming and complete fertilizers

High Soil Aluminum Causes Root Damage

Manganese Toxicity

- A mineral in basalt
- Mn²⁺ is an essential plant nutrient, but at high concentrations it becomes toxic
- Mn²⁺ concentration depends on pH, O₂ availability and organic matter
 - As Soil pH decreases Mn toxicity increases
 - As Oxygen is depleted (saturated soil) Mn toxicity increases
 - Adding organic matter increases Mn toxicity increases

Soils with Potential Mn Toxicity

K perfects

 Oxisols exisiting at low to moderate elevation (200-750 ft) with moderate rainfall (20-60 in/yr)

Liming

- 1. Ideal pH range: 6.0 7.0
- Liming is critical when pH drops below 5.5
- 2. Raise pH:
 - Increases P availability
 - Corrects AI and Mn toxicity
 - Increases N, S, B, Cu and Mo availability
- 3. To supply Ca
- 4. Liming materials
 - calcium carbonate (limestone)
 - calcium/magnesium carbonate (dolomite)

Liming curves for many soil series in Hawaii available online

http://www.ctahr.hawaii.edu/oc/freepubs/pdf/AS-1.pdf

Soil Fertility Depends on:

- Amount of clay
- Soil Organic MatterSoil Acidity
- Type of clay
 - high activity clay
 - low activity clay

Essential Plant Nutrients

Macronutrients

Mineral/ Element	Chemical symbol	Main requirement/use by the plant
Macronutrients		
Nitrogen	N	Plant growth; proteins; enzymes; hormones; photosynthesis
Sulphur	S	Amino acids and proteins; chlorophyll; disease resistance; seed production
Phosphorus	Р	Energy compounds; root development; ripening; flowering
Potassium	к	Fruit quality; water balance; disease resistance
Calcium	Ca	Cell walls; root and leaf development; fruit ripening and quality
Magnesium	Mg	Chlorophyll (green colour); seed germination

Micronutrients: B, Cu, Fe, Mn, Zn, Mo, Ni, Co, Cl

Nutrient Deficiency Symptoms in Plants

http://landresources.montana.edu/ NM/Modules/Module9.pdf

Soil Tests

- Soil tests determine how much nutrients are in the soil
- Soil tests are used to make fertilizer recommendations
- Soil tests improve fertilizer application efficiency

Soil Testing

- Separate samples for distinct management areas
- Proper depth/s
- Usually 15 to 20 cores, mix well, take sub-sample
- Avoid contamination

Soil Test Calibration

Soil Test Level

Soil Test Printout

Soil Test Printout

LIGHT SOIL	_	_			INTERP	RETATION			
soil Analysis	Results	Expected	Very Low	Low	Suff	icient	High	1	Very High
_pH	5.6	6.15							
P_ppm	9.8	67.5							
K_ppm	223	300							
La_ppm	795	3500							
or sc	280	No oritorio (and a second						
Total N %		No criteria f	found						
1.11.1. D.C.		The street is a	O MINA						
salinity_EC		1.25							
salinity_EC		1.25							
Fertilizer	and Lir	1.25 ne Recon	nmendations						
Fertilizer	and Lir Requirem	1.25 me Recon	nmendations): Nitrogen:	300	Phospho	rus: 989	Potas	sium: 9	2
Fertilizer Total Nutrient Fertilizer / Lin	and Lin Requirem e Materia	1.25 me Recon ent (Ibs/Acre)	nmendations): Nitrogen: Total Amour	300 t (ibs/100sq-	Phospho ft.) Applica	rus: 989 tions	Potas: Cost Es	sium: 9: timate ()	2 \$/100sq-ft.
Fertilizer Total Nutrient Fertilizer / Lin Fertilizer:	and Lin Requirem Materia 10-30-	1.25 me Recon ent (Ibs/Acre) a	nmendations): Nitrogen: Total Amour	300 t (lbs/100sq-	Phospho ft.) Applica split into	rus: 989 tions 5 appins.	Potas: Cost Es	sium: 9 timate (1.38	2 \$/100sq-ft.
Fertilizer Total Nutrient Fertilizer / Lin Fertilizer: Lime Material	Requirem Materia 10-30- Dolom	1.25 me Recon ent (lbs/Acre) d -10 ite	nmendations): Nitrogen: Total Amour (300 t (lbs/100sq- 1.88 1.33	Phospho ft.) Applica split into split into	rus: 989 tions 5 appins. 1 appins.	Potas: Cost Es	sium: 90 timate (1.38 0.734	2 \$/100sq-ft.
Fertilizer Total Nutrient Fertilizer / Lin Fertilizer: Lime Material Ca Material:	and Lin Requirem te Materia 10-30- Dolom Gypsu	1.25 me Recon ent (lbs/Acre) d -10 ite	nmendations): Nitrogen: Total Amour (300 t (lbs/100sq- 1.88 1.33 6.5	Phospho ft.) Applica split into split into split into	rus: 989 tions 5 appins. 1 appins. 1 appins.	Potas: Cost Es	sium: 90 timate (1.38 0.734 2.98	2 \$/100sq-ft.

Management for Soil Quality

Applying Compost

- Most of N is stabilized in organic forms, only ≈10% N available in first crop cycle
- High compost rates required to supply total crop N requirement initially (i.e., > 40 tons/acre)
- Compost applications build soil organic matter increasing residual N release over time (N release rate difficult to predict)

N Fertilizers

12-0-0

<u>Organic</u>

- Fish meal (≈10% N)
- Feather meal (12 13% N)
- Chicken manure (≈3% N)

Conventional

- Urea (46-0-0)Ammonium sulfate (21-0-0)
- Ammonium suirate (21-0
 16-16-16
- Calcium nitrate
- Potassium nitrate

P Fertilizers

Organic

- Bone meal (≈12-15% P)
- Rock phosphate (2-5% P)
- Chicken manure (2-3% P)

Conventional

- TSP (0-45-0)
- DAP (18-46-0)
- 10-30-10

K Fertilizers

Organic

Hardwood ashes

Seaweed

Sulfate of potash (0-0-50)

Conventional • Muriate of potash (0-0-60)

Hardwood ashe

Strategical Page

0-0-50

4R Nutrient Stewardship Concept

Right Source What type of fertilizer? Right Rate How much? Right Time When & How often? Right Place

- Where?

Summary

- Soils provide critical ecosystem services
- Soils vary on the landscape
- Clay mineralogy affects soil behavior
- Soil pH affects nutrient availability
- Organic matter makes a difference
- If we know our soils we can manage them well

