University of Hawai‘i at Manoa
Skip Breadcrumb

Last updated on Tuesday, August 18, 2020     Make updates ->

Zhi-Yan (Rock)  Du

Name :

Zhi-Yan (Rock) Du

Title :

Asst Prof

Unit :

Department of Molecular Biosciences & BioEngineering

Address :

1955 East West Rd
                  Honolulu, HI 96822

Room :

Ag Sciences Building 218

Phone :

(808)956-8819

Fax :

(808)956-3542

E-mail :

duz@hawaii.edu

Website :

https://www2.hawaii.edu/~duz/

Specialties :

Biochemistry and Molecular Biology

Professional Prep/Appointments :


Education
Ph.D. Biochemistry & Molecular Biology, The University of Hong Kong
M.S. Evolutionary Developmental Biology, Institute of Botany, Chinese Academy of Sciences
B.S. Beijing Forestry University

Professional Positions and Appointments

Assistant Professor (fixed-term), Department of Biochemistry & Molecular Biology, Michigan State University 2018-2020
Research Associate, US Department of Energy-MSU Plant Research Laboratory, Michigan State University 2013-2018
Research Assistant, Plant Molecular Biology and Biochemistry, School of Biological Sciences, The University of Hong Kong 2011-2013



Courses Taught:


MBBE/Biol 401 Molecular Biotechnology (3 cr) in spring each year


Research Interests :


Dr. Du is interested in using engineering and synthetic approaches to produce valuable bio-products in microalgae and establish a co-production system with synthetic consortia. We also work on lipid metabolism in plants/microalgae, fungi, and bacteria, as well as symbiosis among the organisms.


Selected Publications :


Liber, J., Bryson, A., Bonito, G., and Du, Z. 2020. Harvesting Microalgae for Food and Energy Products. Small Methods, 2000349.

Zhu, S., Bonito, G., Chen, Y., and Du, Z. 2020. Oleaginous Fungi in Biorefineries. In “Reference Module in Life Sciences” (ISBN 9780128096338), DOI: 10.1016/B978-0-12-819990-9.00004-4.

Zienkiewicz, A., Zienkiewicz, K., Poliner, E., Pulman, J., Du, Z., et al. 2020. The microalga Nannochloropsis during transition from quiescence to autotrophy in response to nitrogen availability. Plant Physiology, 182:819-839.

Du, Z., Zienkiewicz, K., Vande Pol, N., Ostrom, N., Benning, C.*, and Bonito, C.* Algal-fungal symbiosis leads to a photosynthetic mycelium. eLife, 2019;8:e47815.

O'Donnell, D., Du, Z., Litchman, E. 2019. Experimental evolution of phytoplankton fatty acid thermal reaction norms. Evolutionary Applications, https://doi.org/10.1111/eva.12798.

Du, Z., Alvaro, J., Hyden, B., Zienkiewicz, K., Benning, N., Zienkiewicz, A., Bonito, C., and Benning, C. 2018. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnology for Biofuels, 11: 174.

Poliner, E., Takeuchi, T., Du, Z., Benning, C., Farré, E. 2018. Non-transgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synthetic Biology, 7: 962-968.

Du, Z., Lucker, B., Zienkiewicz, K., Millera, T., Zienkiewicz, A., Sears, B., Kramer, D., and Benning, C. 2018. Galactoglycerolipid Lipase PGD1 Is Involved in Thylakoid Membrane Remodeling in Response to Adverse Environmental Conditions in Chlamydomonas. The Plant Cell, 30: 447-465. 

Zienkiewicz, K., Zienkiewicz, A., Poliner, E., Du, Z., Vollheyde, K., Herrfurth, C., Marmon, S., Farré, E., Feussner, I., and Benning, C. 2017. Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. Biotechnology for Biofuels, 10: 8.

Uehling, J., Gryganskyi, A., Hameed, K., Tschaplinski, T., Misztal, P., Wu, S., Desirò, A., Vande Pol, N., Du, Z. et al. 2017. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environmental Microbiology, 19: 2964-2983.

Zienkiewicz, K., Du, Z., Ma W., and Benning, C. 2016. Neutral lipid biosynthesis in microalgae - molecular, cellular and physiological insight. Biochimica et Biophysica Acta, 1816: 1269-1281.

Du, Z., Arias, T., Meng, W., and Chye, M. 2016. Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Progress in Lipid Research, 63: 165-181.

Du, Z., and Benning, C. 2016. Triacylglycerol accumulation in photosynthetic cells in plants and algae. In “Lipids in plant and algae development” (ISBN 9783319259796), edited by Nakamura, Y. and Li-Beisson Y. Springer. 179-205.

Du, Z., Chen, M., Chen, Q., Gu, J., and Chye, M. 2015. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant, Cell & Environment, 38: 101-117.

Du, Z., Chen, M., Chen, Q., Xiao, S., and Chye, M. 2013a. Arabidopsis Acyl-CoA-Binding Protein ACBP1 participates in the regulation of seed germination and seedling development. The Plant Journal, 74: 294-309.

Du, Z., Chen, M., Chen, Q., Xiao, S., and Chye, M. 2013b. Overexpression of Arabidopsis Acyl-CoA-Binding Protein ACBP2 enhances drought tolerance. Plant, Cell & Environment, 36: 300-314.

Du, Z., and Chye, M. 2013c. Interactions between Arabidopsis acyl-CoA-binding proteins and protein partners. Planta, 238: 239-245.

Du, Z., Xiao, S., Chen, Q., and Chye, M. 2010a. Arabidopsis acyl-CoA-binding proteins ACBP1 and ACBP2 show different roles in freezing stress. Plant Signaling & Behaviour, 5: 607-609.

Du, Z., Xiao, S., Chen, Q., and Chye, M. 2010b. Depletion of the membrane-associated acyl-CoA-binding protein ACBP1 confers freezing tolerance in Arabidopsis. Plant Physiology, 152: 1585-1597.



Languages :


English, Mandarin and Cantonese