University of Hawai‘i at Manoa
Skip Breadcrumb

Last updated on Friday, June 12, 2020     Make updates ->

Miaoying  Tian

Name :

Miaoying Tian

Title :

Associate Researcher/Professor

Unit :

Department of Plant & Environmental Protection Sciences

Address :

3190 Maile Way
                  Honolulu, HI 96822

Room :

St. John 317

Phone :


E-mail :

Specialties :

Molecular Plant-Microbe Interactions, Functional Genomics of Plants and Plant Pathogenic Fungi and Oomycetes, Gene Editing, Molecular Identification of Fungi and Oomycetes, Detection of Various Molecular Interactions Using Surface Plasmon Resonance (SPR) technology

Professional Prep/Appointments :

 Ph.D. 2005, Plant Pathology, The Ohio State University
 Postdoc (2006-2009), Plant Pathology, Michigan State University
 Research Associate and Senior Research Associate (2009-2013), Boyce Thompson Institute for Plant Research, Cornell University


PEPS 371 Genetics: Theory to Application
PEPS 652 Molecular Plant-Fungal Interactions
PEPS 605  Biology of Plant Pathogens: Fungi and Nematodes (Fungi section)

Research Interests:

My lab is interested in dissecting the molecular basis specifying pathogen virulence and plant resistance in order to develop novel disease control strategies. We mainly focus on vegetable and fruit diseases caused by fungi and oomycetes. Our current research involves two oomycete pathogens Phytophthora palmivora and Peronospora belbahrii, and one fungal pathogen Corynespora cassiicola. Peronospora belbahrii is an obligate biotrophic pathogen that causes basil downy mildew, a foliar disease threatening sweet basil production worldwide. Phytophthora palmivora has a very broad host range with over 1000 plant species, including many economically important hosts such as papaya, cacao, rubber tree, citrus, coconut and black pepper. Corynespora cassiicola is known as a pathogen of many important agricultural crops, such as cucumber, tomato, papaya, soybean and cowpea. We are using various genetic, genomic, molecular, biochemical and plant pathology approaches in our research with an ultimate goal to develop novel effective environmental friendly disease control strategies. In addition to basic research, we are also interested in translational and applied research to translate discoveries from basic science to practical disease control measures.

Publications :

Navet N. and Tian M.* (2020) Efficient targeted mutagenesis in allotetraploid sweet basil by CRISPR/Cas9. Plant Direct, 4(6): e00233. (*Corresponding author).

Pettongkhao S., Navet N., Schornack S., Tian M.*, Churngchow N* (2020). A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Scientific Reports, 10: 2319 (Article number) (*Corresponding author).

Shao D. and Tian M.* (2018) A qPCR approach to quantify the growth of basil downy mildew pathogen Peronospora belbahrii during infection. Current Plant Biology, 15:2-7. (*Corresponding author)

Gumtow R., Wu D., Uchida J. and Tian M*. (2018) A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Molecular Plant-Microbe Interactions, 31(3):363-373 (*Corresponding author)

Tian M., and Kamoun S. (2017) pHIS-ATS: a protein expression vector modified from pFLAG-ATS for secreted expression of HIS-tagged fusion proteins. figshare.

Ekchaweng K., Evangelisti E., Schornack S., Tian M.* and Churngchow N*. (2017) The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. PLoS One. 2017 May 1;12(5):e0175795. doi:10.1371/journal.pone.0175795. (*Corresponding author)

Mishra S., Wang K. H., Sipes B. S and Tian M. (2017) Suppression of root-knot nematode by vermicompost tea prepared from different curing ages of vermicompost. Plant Disease, 101(5): 734-737. 

Wu D., Navet N., Liu Y., Uchida J. and Tian M.* (2016) Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiology, 16: 204 DOI: 10.1186/s12866-016-0825-1 ( (*Corresponding author)

Khunjan U., Ekchaweng K., Panrat T., Tian M., and Churngchow N. (2016) Molecular cloning of HbPR-1 gene from rubber tree, expression of HbPR-1 gene in Nicotiana benthamiana and its inhibition of Phytophthora palmivora. PLoS One. 2016 Jun 23;11(6):e0157591.

Klessig D. F., Tian M., and Choi H. W. (2016) Multiple targets of salicylic acid and its derivatives in plants and animals. Front Immunol. 2016 May 26;7:206.

Choi H. W., Manohar M., Manosalva P., Tian M., Moreau M., and Klessig D. F. (2016) Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLoS Pathogens, 2016 Mar 23;12(3):e1005518.

Choi H. W.*, Tian M.*, Manohar M., Harraz M. M., Park S. W., Schroeder F. C., Snyder S. H., and Klessig D. F. (2015) Human GAPDH is a target of aspirin's primary metabolite salicylic acid and its derivatives. PLoS One, 10(11):e0143447. (*Co-first author)

Choi H. W., Tian M., Song F., Venereau E., Preti A., Park S. W., Hamilton K., Swapna G. V., Manohar M., Moreau M., Agresti A., Gorzanelli A., De Marchis F., Wang H., Antonyak M., Micikas R. J., Gentile D. R., Cerione R. A., Schroeder F. C., Montelione G. T., Bianchi M. E., and Klessig D. F. (2015) Aspirin's active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Mol. Med. 18(21):526-35.

Manohar M.*, Tian M.*, Moreau M.*, Park S. W., Choi H. W., Fei Z., Friso G., Asif M., Manosalva P., von Dahl C. C., Shi K., Ma S., Dinesh-Kumar S. P., O'Doherty I., Schroeder F. C., van Wijk K. J. and Klessig D. F. (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front. Plant Sci. 5: 777. (*Co-first author)

Tian M., Sasvari Z., Gonzalez P., Friso G., Rowland E., Liu X., van Wijk K. J., Nagy P. D. and Klessig D. F. (2015) Salicylic acid inhibits the replication of Tomato Bushy Stunt Virus by directly targeting a host component in the replication complex. Molecular Plant-Microbe Interactions, 28(4): 379-86. (Highlighted in MPMI as MPMI Editor's Pick, April 2015)

Liao Y., Tian M., Zhang H., Li X., Wang Y., Xia X., Zhou J., Zhou Y., Yu J., Shi K. and Klessig DF. (2015) Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytol. 205(3): 1296-1307.

Dong S., Stam R., Cano L. M., Song J., Sklenar J., Yoshida K., Bozkurt T. O., Oliva R., Liu Z., Tian M., Win J., Banfield M. J., Jones A. M. E., van der Hoorn R. A. L. and Kamoun S. (2014) Effector specialization in a lineage of the Irish potato famine pathogen. Science, 343(6170): 552-555

Moreau M., Westlake T., Zampogna G., Popescu G., Tian M., Noutsos C., and Popescu S. (2013) The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. The Plant Journal, 76(4): 603-614.

Tian M., von Dahl C. C., Liu P. P., Friso G., van Wijk K. J., and Klessig D. F. (2012) The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. The Plant Journal, 72(6): 1027-1038.

Porter K., Shimono M., Tian M., and Day B. (2012) Arabidopsis actin-depolymerizing factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathogens, 8(11): e1003006.

Moreau M.*, Tian M.*, and Klessig D. F. (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 22(12): 1631-1633. (*Co-first author)

Tian M., Win J., Savory E., Burkhardt A., Held M., Brandizzi F., and Day B. (2011) 454 genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. Molecular Plant-Microbe Interactions, 24(5): 543-553.

Chinnapun D., Tian M., Day B., and Churngchow N. (2009) Inhibition of a Hevea brasilensis protease by a Kazal-like serine protease inhibitor from Phytophthora palmivora. Physiological and Molecular Plant Pathology, 74: 27-33.

Tian M., Chaudhry F., Ruzicka D. R., Meagher R. B., Staiger C. J., and Day B. (2009) Arabidopsis actin depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiology, 150(2): 815-824.

Song J., Win J., Tian M., Schornack S., Kaschani F., Ilyas M., van der Hoorn R., and Kamoun S. (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A., 106(5): 1654-1659.

Zhou F., Mosher S., Tian M., Sassi G., Parker J., and Klessig D. F. (2008) The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differently for defense activation and morphological alterations. Molecular Plant-Microbe Interactions, 21(1): 40-49.

Tian M., Win J., Song J., van der Hoorn R., van der Knaap E., and Kamoun S. (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology, 143: 364-377.

Tian M., and Day B. (2006) Domain switching and host recognition. Molecular Microbiology, 61(5): 1091-1093.

Tian M. and Kamoun S. (2005) A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. BMC Biochemistry, 6: 15.

Torto-Alalibo T., Tian M., Gajendran K., Waugh M. E., van West P., and Kamoun S. (2005) Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiology, 5: 46.

Tian M., Benedetti B., and Kamoun S. (2005) A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiology, 138: 1785-1793.

Tian M., Huitema E., da Cunha L., Torto T., and Kamoun S. (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Journal of Biological Chemistry, 279(25): 26370-26377.

Huitema E., Bos J. I. B., Tian M., Win J., Waugh M. E., and Kamoun S. (2004) Linking sequence to phenotype in Phytophthora-plant interactions. Trends in Microbiology, 12(4): 193-200.